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Abstract

Matched filters are widely used to localise signal patterns due to their
high efficiency and interpretability. However, their effectiveness deterio-
rates for low signal-to-noise ratio (SNR) signals, such as those recorded
on edge devices, where prominent noise patterns can closely resemble the
target within the limited length of the filter. One example is the ear-
electrocardiogram (ear-ECG), where the cardiac signal is attenuated and
heavily corrupted by artefacts. To address this, we propose the Sequential
Matched Filter (SMF), a paradigm that replaces the conventional sin-
gle matched filter with a sequence of filters designed by a Reinforcement
Learning agent. By formulating filter design as a sequential decision-
making process, SMF adaptively design signal-specific filter sequences
that remain fully interpretable by revealing key patterns driving the
decision-making. The proposed SMF framework has strong potential for
reliable and interpretable clinical decision support, as demonstrated by
its state-of-the-art R-peak detection and physiological state classification
performance on two challenging real-world ECG datasets. The pro-
posed formulation can also be extended to a broad range of applications
that require accurate pattern localisation from noise-corrupted signals.

Keywords: Reinforcement Learning, Pattern Localisation, Matched Filter,
Wearable Sensors, ECG R-peak Detection
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1 Introduction

Pattern localisation is a fundamental problem in signal processing, with appli-
cations spanning biomedicine, radar, and finance [1–4]. The recent development
of edge signal acquisition devices has created a strong demand for more
robust pattern localisation methods capable of tackling low signal-to-noise
ratio (SNR) conditions. One prominent example of pattern localisation on edge
is detecting (localising) R-peaks—the patterns corresponding to the electri-
cal activity of ventricular depolarisation—in ear-electrocardiograms (ECGs),
which are recorded via electrodes placed in the ear canal instead of on the
chest [5]. Whilst being more convenient to set up and record over a prolonged
period of time, the ear-ECG signal suffers from an extremely low SNR in com-
parison to the chest ECG. This is due to the attenuation of the ECG signal
during propagation to the ear canal, plus the ear’s proximity to non-cardiac
sources of noise, including major arteries, muscles, and brain activity. Conse-
quently, despite its central role in advanced physiological monitoring [6–10],
R-peak localisation in ear-ECG remains challenging, with existing methods
failing to deliver reliable performance (see Fig. 1).

Fig. 1 Despite the clear advantages in convenience, the critically low SNR of ear-ECG leads
to poor R-peak detection performance by both the widely used Pan–Tompkins algorithm [11]
and the state-of-the-art method using the U-Net [12]. In contrast, our proposed method,
SMF, exhibits robust localisation performance on both normal ECG and the challenging
ear-ECG.

Outside of ear-ECG, advanced pattern localisation methods have been
applied to detect R-peaks in low-SNR ECG signals. These methods often
rely on deep learning (DL), where neural networks are trained to minimise
a proxy loss function, such as the Binary Cross-Entropy (BCE) loss, so that
they predict whether each sample in an ECG segment corresponds to an R-
peak [13–15]. The recent advances in neural network architectures, such as the
U-Net [16], have further improved the performance of DL-based R-peak detec-
tion methods [12]. However, these approaches suffer from poor interpretability,
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as it is unclear which signal patterns drive the localisation decisions. Moreover,
optimising the proxy loss function does not fully align with clinically relevant
performance metrics, such as the true positive, false positive, and false negative
rates of R-peak detection.

An alternative, more interpretable approach is the matched filter (MF) [17,
18], which exploits the characteristic QRS pattern around R-peaks. After cor-
relating a QRS-like template with a noisy ECG signal, high correlation values
appear at the target QRS pattern locations (i.e., the R-peaks), whereas low val-
ues occur elsewhere due to morphological differences between the template and
noise [19]. However, MF is inherently limited in differentiating true R-peaks
from artefacts with high prominence and similar morphology. This challenge
is particularly acute in ear-ECG, where the amplitudes of artefact peaks are
comparable to or even exceed the target R-peaks. Moreover, existing MF tem-
plates are typically manually defined or derived from historical QRS patterns.
Although recent work has explored learning the MF template [20], the resulting
template remains static at deployment, making it suboptimal for ECGs with
non-stationary QRS patterns, such as those seen in arrhythmia patients [21].

In this work, we propose the Sequential Matched Filter (SMF), which
replaces the conventional single-MF paradigm with a sequence of signal-specific
filters to achieve robust performance while retaining full interpretability. To
automatically design the filter sequences, SMF performs sequence-level plan-
ning using a Reinforcement Learning (RL) agent, a data-driven approach that
leverages recent advances in deep neural networks to achieve competitive per-
formance in complex sequential decision-making tasks [22–26]. SMF offers
several key advantages over existing pattern localisation methods:

• SMF distinguishes the target pattern from prominent noise patterns with
similar waveforms by iteratively exploiting subtle morphological differences.

• SMF adapts to non-stationary target patterns, such as those observed in
arrhythmia patients, by tailoring MF templates for each signal segment.

• SMF offers full interpretability by revealing, at each step, the key signal
patterns that inform the final localisation decision.

• SMF outperforms existing DL-based methods by directly optimising locali-
sation performance metrics without a proxy loss function.

To the best of our knowledge, SMF is the first method to automate sequen-
tially applied MFs for pattern localisation. Its RL agent employs a lightweight
neural network with around 150 k parameters (≈0.57MB) that is suitable for
real-time signal analysis on the edge [27], yet shows substantial performance
gains over state-of-the-art approaches while preserving full interpretability.
The competitive performance of SMF is empirically verified on two challenging
real-world datasets: the noisy ear-ECG dataset (recorded using our custom-
built in-ear sensors) and the pathological arrhythmia ECG dataset (recorded
using handheld edge devices). Additionally, from the detected R-peaks, we
derive Heart Rate Variability (HRV) features to classify physiological states,
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Fig. 2 Overcoming the limitation of single-stage MF using a sequence of MFs. No single-
stage MF can distinguish between the false and the true peaks in x1, as the patterns
surrounding them are identical within the span of the length-9 MF template. However, a
sequence of only two MFs can accurately localise the true peak: the first MF, a1, introduces
pattern variation in x2, and the second MF, a2, correlates with the descending pattern that
corresponds to the true peak.

where SMF exhibits robust performance, highlighting its potential for real-
world cardiac health monitoring. We believe that the RL agent-driven filter
design paradigm presented in this paper extends beyond the biomedical sig-
nal processing domain to a wide range of signal processing tasks that demand
lightweight yet robust pattern localisation.

2 Preliminary

In this section, we describe the MF and present an example illustrating its
inherent limitation in distinguishing between similar patterns. For a signal
xt ∈ RL, applying a MF with template at ∈ RH produces the filtered signal,
xt+1 ∈ RL, whose n-th sample is calculated as

xt+1(n) =

H−1∑
k=0

at(k)xt(n+ k −
⌊
H

2

⌋
), (1)

where at(i) = 0 when i < 0 or i ≥ H, xt(i) = 0 when i < 0 or i ≥ L, and
the operator ⌊i⌋ is the greatest integer less than or equal to i. Equation (1)
can be interpreted as sliding the template at over the signal xt and measuring
their correlation at these positions (see illustrations in Fig. 2, green blocks).
Ideally, the correlation level, xt+1, should peak at the index of the target pat-
tern, allowing straightforward pattern localisation by locating the prominent
maxima. However, MF performance degrades when noise contains patterns
similar to the target, as illustrated in the example in Fig. 2, where distin-
guishing the true peak (green, right) from the false peak (red, left) in x1 is
infeasible for any template at with limited length (H = 9 in this case), since
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the patterns surrounding both peaks are identical within the span of the tem-
plate. Although a template can be designed to match the transition from the
true peak to the negative baseline, the resulting correlation maxima would be
delayed, introducing a temporal shift in the identified peak location.

On the other hand, the true peak can be localised with a sequence of merely
two strategically designed MFs. As noted previously, a single-stage MF can-
not distinguish between the false and true peaks in Fig. 2 because both appear
identical within the span of the filter. However, by designing a template a1
that matches the valley shape between the two peaks, the resulting output
x2 ascends around the false peak and descends around the true peak, thereby
producing distinctive pattern variations between the noise and the target. A
second template, a2, is then shaped to match the descending pattern of x2 near
the true peak, enabling accurate extraction of the true peak. Consequently,
x3 exhibits its largest amplitude at the time index of the true peak. As illus-
trated in Fig. 2, the overall output x3 indeed peaks at the true peak location,
confirming the successful localisation of the true peak.

3 Methodology

3.1 SMF as a Sequential Decision-Making Process

The example in Section 2 illustrates the effectiveness of strategically designing
and iteratively applying sequence-level optimised MFs. To this end, we model
SMF as a sequential decision-making process involving interactions between
two key components: an environment and an agent. An episode consists of
N cascaded MF steps, where the output of each step becomes the input to
the subsequent step, as illustrated in Fig. 3 for N = 4. In the first step, the
environment is initialised with an ECG segment that is randomly sampled from
the training set during training, or taken directly from real-time ECG data
during deployment. At each step, the RL agent takes in the environment signal
(state) and generates an MF template (action), which is correlated with the
environment signal. The correlation output replaces the previous environment
signal. In the next step, the same procedures are repeated. After the last
(N -th) step, R-peaks are localised from the environment’s stored signal by
identifying local maxima that exceed a threshold of 0.5 and are separated by at
least 30 samples. During training, these localised R-peaks are compared with
the ground-truth R-peaks to calculate a performance metric, which is used as
a reward signal that informs the learning of the RL agent. During testing or
deployment, where ground-truth R-peaks are unavailable, SMF automatically
detects the R-peaks without external guidance.

Formally, the SMF framework is a Markov Decision Process (MDP),
because the next state, i.e., the MF correlation output, is determined only
by the current signal and the MF template applied. We denote the MDP as
M = (X ,S,A, r, corr). The signal space X ⊆ RL contains both the original
and SMF-transformed ear-ECG signals. In this work, we set the length of col-
lected ECG segments to L = 250. The state space is a set S = {st = (xt, t) |
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Fig. 3 The workflow of the SMF for R-peak detection. The initial signal x1 is sampled from
the ECG dataset with distribution P1(x). At time step t, the state st = (xt, t) contains the
signal xt and the time step t, based on which the RL agent generates the MF template, at,
for calculating xt+1, which is iteratively used as the state for step t+ 1. The RL agent has
policy πθ in the form of a neural network that generates stochastic at ∼ πθ(at | st). After
training, SMF templates at are interpretable, as they reveal key signal patterns at each step.

xt ∈ X , t ∈ {1, . . . , N}} that contains states st. Each st ∈ S is a tuple of sig-
nal xt and its corresponding time step t within an episode. The action space
is a set A ⊆ RH that contains all possible MF templates. In this work, we set
H = 8, which is a short enough length for most edge applications. We define
the reward function r : S → R as

r(st) = δtNf(TP,FP,FN)

= δtN (10TP− 5FP− 5FN),
(2)

where the δab = 1 if a = b and δab = 0 if a ̸= b. For the last state sN in the
episode, the SciPy function find peaks() [28], with height parameter set to 0.5
and distance parameter set to 30, was used to identify all eligible peaks. These
identified peaks are compared against the ground-truth peaks with a tolerance
of 5 time steps (0.02s). The true positive (TP) is the number of correctly
identified R-peaks, the false positive (FP) is the number of falsely identified
peaks, and the false negative (FN) is the number of missed peaks. As shown
in (2), a positive reward is given to a high TP, while penalties are given to a
high FP and a high FN. The correlation function corr : X ×A → X is defined
as xt+1 = corr(xt, at), where the n-th sample of xt+1 is calculated using (1).
Although we deviate from the standard MDP definition by introducing an
additional internal signal space X , the expression in (1) still ensures the core
Markov property, i.e., the upcoming state of SMF depends only on the current
state and the current action.

We define the stochastic SMF policy as π : S × A → R, which takes an
state st as input and outputs an MF template distribution π(at | st). The
stochastic π explores various MF template sequences during training, thus
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avoiding getting stuck with suboptimal solutions. The optimisation objective
is to maximise the expected cumulative reward in an episode, that is

π⋆ = argmax
π

Es1,a1,···

[
N∑
t=1

r(st)

]
, (3)

where st = (xt, t), x1 is sampled from the ECG dataset with x1 ∼ P1(x1),
xt+1 = corr(xt, at), and at ∼ π(at | st). For the value function, V π, and the
state-action value function, Qπ, which will be used later for training the policy
π, we follow the standard definitions from [29], given by:

V π(st) = Eat,st+1,at+1,...

[
N∑
i=t

r(si)

]
,

Qπ(st, at) = Est+1,at+1,...

[
N∑
i=t

r(si)

]
. (4)

3.2 Optimising SMF with RL

To address the continuous state space S and action space A in SMF, this study
employs deep RL, where the policy π is approximated using a neural network
πθ parametrized by θ to allow generalization to unobserved states and actions
in S and A. The policy πθ takes in a state tuple st = (xt, t) of size 250 + 1,
and outputs an MF template of length 8, using the neural network illustrated
in the lower panel of Fig. 3. The input state st = (xt, t) comprises a signal xt
of length L = 250 and a scalar time index t. The signal xt is processed by two
1-dimensional Convolutional Neural Network (CNN) layers (Conv): the first
with a kernel size of k = 8 and stride s = 4, and the second with a kernel size
of k = 4 and stride s = 2. The convolution output is then transformed into a
feature vector of size 128 using a fully connected layer (FC). This feature vector
is concatenated with the scalar, t, resulting in a combined representation of size
129. This concatenated representation is further transformed by an FC layer
into a vector of size 128, which is subsequently mapped through two separate
FC layers to generate the mean vector µ (size 8) and the diagonal covariance
matrixΣ = diag(σ1, . . . , σ8). Together, µ andΣ define a multivariate Gaussian
distribution N8(µ,Σ), from which the MF template, at, is sampled using the
reparametrization trick [30].

The general procedure for training πθ is summarised in Algorithm 1. Most
existing deep RL algorithms can be used to solve the optimisation problem
in (3), among which the two most prominent categories are: i) policy gradi-
ent methods, which directly optimise πθ using the objective in (3); and ii)
actor–critic methods, which optimise πθ through estimated state–action val-
ues, enabling learning from past experience and thereby improving sample
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Algorithm 1 Training SMF

1: Initialization: Train set Xtrain containing ECG segments and ground-
truth R-peak positions, episode length N

2: Output: Trained SMF policy πθ
3: repeat
4: Randomly sample (x1, {peaks}) ∈ Xtrain

5: t← 1
6: while t ≤ N do
7: Get MF template: at ∼ πθ(at | st = (xt, t))

8: xt+1(n) =
∑H−1

k=0 at(k)xt(n+ k −
⌊
H
2

⌋
)

9: if t == N then
10: Find local maximums {preds}.
11: Compute TP, FP, and FN by comparing {preds} and {peaks}
12: r(xt) = 10TP− 5FP− 5FN
13: else
14: r(xt) = 0
15: end if
16: st+1 = (xt+1, t+ 1)
17: Use (st, at, st+1, r(st)) to update πθ (e.g., using PPO or SAC).
18: t = t+ 1
19: end while
20: until convergence is true

efficiency. This work proposes two SMF implementations based on two state-
of-the-art RL algorithms, each representing one of the two abovementioned
categories.

3.2.1 SMF-PPO

Proximal Policy Optimisation (PPO) is a prominent policy gradient method
that clips the objective to prevent excessive policy updates, thereby stabilising
training [31]. The SMF-PPO first collects a batch of SMF episodes using πθold ,
then performs update by maximising the following objective, as

max
θ

Êst,at [L(st, at, θold, θ)] , where

L(st, at, θold, θ) =

min
(

πθ(at|st)
πθold

(at|st) , 1 + ϵ
)
Ât, Ât > 0

max
(

πθ(at|st)
πθold

(at|st) , 1− ϵ
)
Ât, Ât ≤ 0

,

Ât = r(sN )− Vψ(st). (5)

At state st, Ât captures how much better (or worse) each chosen MF template,
at, performed compared to the expected average. The performance of at is
evaluated as the final peak extraction performance r(sN ) in the episode that
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includes st. The expected average is estimated using the value function, V π,
defined in (4). A positive Ât indicates that MF template at outperforms the
average of πθold . Therefore, to maximize L(st, at, θold, θ), it is favourable to
increase the probability of using at, i.e., increase πθ(at | st). However, the
min(·) ensures that the updated πθ is not too far from the old πθold , i.e.,
πθ(at | st) ≤ (1+ϵ)πθold(at | st). The same logic applies to the case where Ât is
negative. The clipping in SMF-PPO avoids drastic updates on MF templates,
which could result in catastrophic performance degradations.

In practice, V π is approximated by a neural network Vψ, which shares a
similar architecture with the policy network πθ but outputs a scalar value. The
parameters ψ are updated by minimising the mean squared error between Vψ
and its Bellman estimation

min
ψ

Êst,st+1

[
(Vψ(st)− (r(st) + Vψ(st+1))

2
]
.

In SMF-PPO, the estimation of the advantage Ât in (5) is further stabilised
using the Generalised Advantage Estimator (GAE) [32].

3.2.2 SMF-SAC

Soft Actor-Critic (SAC) is a prominent actor-critic method that uses an
entropy regularisation term in its objective to encourage diverse and robust
policies [30]. The SMF-SAC updates its policy at every SMF step using a
sampled batch of historical MF steps, each denoted by (st, at, st+1, r(st)).
SMF-SAC parametrises the state-action value function Qπ with a neural net-
work, Qϕ, with parameter ϕ, to allow generalisation to unobserved state-action
pairs. The network structure of Qϕ is similar to the policy network πθ but
outputs a scalar value. The ϕ is updated by minimizing the mean square error
between Qϕ(st, at) and its Bellman estimator r(st) +Qϕ(st+1, at+1)

min
ϕ

Êst,at,st+1

[
(Qϕ(s, a)− y)2

]
, where

y = r(st) +Qϕ(st+1, at+1)− α log π(at+1 | st+1),

at+1 ∼ π(at+1 | st+1),

where the entropy regularisation term log π(at+1 | st+1) introduced by [30]
encourages the exploration of diverse MF templates and avoids sticking
to sub-optimal templates. The hyperparameter α adjusts the intensity of
regularisation.

To update the actor πθ, observe that the estimated state-action value Qϕ
indicates the expected future cumulative rewards of taking at ∼ πθ(at | st) at
st, which the updated policy aims to maximise. Therefore, the πθ is directly
updated by maximizing the expected value of Qϕ, as

max
θ

Êst [Qϕ(st, at)− α log π(at+1 | st+1)] , at ∼ πθ(at | st).
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Fig. 4 The ear-ECG acquisition setup. The ear-ECG signal was recorded using our custom-
built in-ear sensors, with the right ear used for recording and the left ear serving as the
reference. The in-ear sensors consist of an earbud and a soft cloth electrode. The ear-ECG
signals were recorded at a sampling rate of 200 Hz and were split into segments with 250
samples (1.25s).

4 Hardware and Data Acquisition

The ear-ECG dataset in this study was recorded from 7 healthy subjects (5
males and 2 females, aged 20-30) under the ethics protocol JRCO 20IC6414.
Our custom-built in-ear sensors were placed in both ear canals, recording sig-
nals from the right ear while using the left ear as the reference. Figure 4
depicts the in-ear sensor based on the design described in [33], which consists
of an earbud and a soft cloth electrode. The earbud was made of viscoelas-
tic foam to alleviate artefacts arising from mechanical deformations of the
ear canal. The cloth electrode was made of stretchable, low-impedance fabric,
ensuring reliable skin contact and enhanced comfort during prolonged wear.
To further reduce impedance caused by poor skin contact, conductive gel was
applied before placing the sensor in the ear canal. The signal was recorded at
a sampling rate of 200 Hz and was subsequently divided into non-overlapping
250-sample segments (1.25s). The left panel of Fig. 4 presents some sample ear-
ECG segments recorded using our setup. The identification of true R-peaks is
extremely challenging in these ear-ECG segments due to the numerous false
artefact peaks around R-peaks. The prominent false peaks with similar or even
greater amplitude compared to true R-peaks pose significant challenges for
accurate R-peak detection.
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5 Experiment Setup

5.1 Datasets

We validated the SMF on two real-world ECG datasets:

1. The ear-ECG dataset contains 720 ear-ECG segments collected using the
setup described in Section 4. The Hearable setup led to low signal ampli-
tude and prominent artefact peaks, making accurate R-peak detection
particularly challenging (see example in Fig. 6a).

2. The arrhythmia ECG dataset contains 771 single-lead ECG segments
derived from subjects with atrial fibrillation, the most common cardiac
arrhythmia, in the 2017 Computing in Cardiology Challenge [34]. This
dataset is challenging because arrhythmia causes non-stationary QRS
patterns and irregular R-R intervals (the distance between successive R-
peaks), as illustrated in Fig. 6b. Additionally, the arrhythmia ECG dataset,
recorded using the handheld AliveCor device, is relatively noisy and sus-
ceptible to electrode misplacement, which can invert the signal in some
segments (see the left panel of Fig. 6c).

For both the ear-ECG dataset and the arrhythmia ECG dataset, each ECG
segment contained 250 samples (1.25s). We used 70% of the ECG segments
for training and the remaining 30% for testing. The train-test split remained
consistent across all experiments. The test set was strictly reserved for eval-
uation, ensuring that neither the SMF nor the baseline methods could access
it during training. To train the SMF, we designed two RL environments in
the widely used OpenAI Gym style [35], corresponding to the ear-ECG and
arrhythmia ECG datasets. During training, the RL environments were reset
every N steps with a randomly selected ECG segment from the training set.
During testing, the N-step SMF was applied to all ECG segments in the test
set for calculating the average performance metrics.

5.2 Implementations of SMF and Baselines

To train the proposed SMF method, 105 SMF steps were observed. For SMF-
PPO, the policy πθ was updated after every 500 consecutive transitions. For
each transition, the cumulative reward used for advantage estimation was the
final R-peak detection performance of the same episode. The 500 collected
single-step transitions were then randomly split into four mini-batches of 125
transitions. The policy update was performed over four epochs, with each
epoch iterating through all mini-batches. The learning rate was 10−4 and the
clipping ratio ϵ was set to 0.2. Gradient clipping was applied to avoid gradients
larger than 0.5. For SMF-SAC, the policy πθ was updated every 2 steps using
a batch of 512 historical single-step transitions stored in a Replay Buffer [36].
A Polyak weight averaging with a smoothing factor 0.005 was used to stabilise
the update of Q networks [37]. The learning rate was set to 10−4 for both
policy updates and Q network updates. The entropy regularisation term α was
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set to 0.2. The training setup and hyperparameters were kept the same for all
experiments in this section.

The neural network architectures used by SMF are lightweight and well-
suited for edge deployment. For SMF-PPO, sharing parameters between the
value function and the policy results in an RL agent with approximately 156 k
parameters (≈0.60MB). For SMF-SAC, both the Q-network and the policy
network contain around 140 k parameters (≈0.54MB). As demonstrated in our
previous work [27], these RL agents can be readily deployed on edge devices
to achieve real-time pattern localisation, requiring only milliseconds to process
60-second ECG recordings on an Android smartphone.

To evaluate the performance and robustness of SMF, we empirically
compared it against the following baselines.

1. The Pan-Tompkins algorithm [11] is arguably the most widely used R-
peak detection method that combines a series of complex signal processing
operations and a decision rule that decides the validity of each potential
R-peak by comparing the current R-R interval to the average of historical
R-R intervals.

2. The Bidirectional RNN (Bi-RNN) [38] is a popular sequential neural net-
work architecture that uses both forward and backward recurrent layers to
capture context from past and future signals.

3. The U-Net [12, 16] is a CNN-based neural network architecture that [12]
reports achieving state-of-the-art performance in ECG R-peak detection.

4. The MF-PPO and MF-SAC are ablated versions of the proposed SMF
algorithm, restricted to episode lengths of 1. We include them as base-
lines to represent the performance of single-stage MFs when optimised in a
data-driven manner. Although non-sequential, these baselines generate MF
templates that directly optimise R-peak detection performance by using the
RL reward function in (2) as their objective.

The Bi-RNN baseline consisted of two Bi-RNN layers with hidden sizes of 64,
which transformed the signal into a feature vector of length 250 with 128 chan-
nels, followed by a linear layer that mapped this feature vector to a length 250
prediction vector. The U-Net baseline followed [12]. As discussed in Section 1,
it is infeasible to directly optimise TP, FP, and FN with DL-based methods.
Therefore, the objectives of the DL methods were to minimise the binary cross-
entropy (BCE) loss between the network prediction vector and a binary vector
of length 250, where ones correspond to R-peak positions and zeros to non-
peak positions. Both Bi-RNN and U-Net were trained over 1000 epochs with
a batch size of 100 and a learning rate of 0.005.

6 Results and Analysis

6.1 Comparison of R-peak Detection Performance.

We first evaluated the best R-peak detection performance. The SMF-PPO and
SMF-SAC had episode lengths of 3, i.e., they automatically applied 3 iterative
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Table 1 R-peak detection performance

Method Precision Recall F-1 score
Ear-ECG

Pan-Tompkins [11] 0.5520 0.5243 0.5378
Bi-RNN [38] 0.7670 0.8778 0.8187
U-Net [12] 0.9029 0.9490 0.9254
MF-PPO 0.9900 0.9612 0.9754
MF-SAC 0.9700 0.9417 0.9557
SMF-PPO 0.9902 0.9806 0.9854
SMF-SAC 1.0000 0.9826 0.9902

Arrhythmia ECG
Pan-Tompkins [11] 0.6676 0.4962 0.5693
Bi-RNN [38] 0.9567 0.8156 0.8806
U-Net [12] 0.9338 0.8843 0.9084
MF-PPO 0.9073 0.9211 0.9141
MF-SAC 0.8978 0.9160 0.9068
SMF-PPO 0.9446 0.9542 0.9494
SMF-SAC 0.9543 0.9567 0.9555

MFs to optimise R-peak detection performance in the last step. The rationale
for selecting an episode length of 3 is provided in Section 6.3.2. In contrast,
MF-PPO and MF-SAC employed the same RL training framework but with an
episode length of 1, corresponding to a single-stage MF. These were included
as baselines to represent data-driven optimisation of single-stage MFs. The
results are shown in Table 1, where the performance metrics are given by

precision =
TP

TP + FP
, recall =

TP

TP + FN

F-1 =
TP

TP + 0.5× (FP + FN)

(6)

Table 1 shows that SMF-SAC consistently achieved the highest preci-
sion, recall, and F-1 scores on both datasets. The Pan-Tompkins method
only achieved an F-1 score of approximately 0.55, caused by its reliance on
historical R-R intervals, which are misleading in arrhythmia ECG signals
with irregular R-R intervals. The DL-based methods, Bi-RNN and U-Net,
underperformed SMFs. Notably, their performance fell below that of the non-
sequential MF-PPO and MF-SAC, highlighting the advantage of the proposed
RL paradigm, which directly optimises R-peak detection, over the existing DL
paradigm, which relies on minimising proxy loss functions. We also observed
that MF-PPO and MF-SAC with episode lengths of 1 underperformed SMF-
PPO and SMF-SAC with episode lengths of 3, providing empirical evidence
that the sequential application of MFs can overcome the inherent limitations
in single-stage MF.

To evaluate the statistical significance of SMF’s performance gains, Fig. 5
presents the average test set F-1 scores of the proposed SMF methods and
the baseline methods, where the means and standard deviations were obtained
by conducting five independent runs for each method using different ran-
dom seeds. To show that the advantage of SMF-PPO and SMF-SAC was



14

0.5

0.6

0.7

0.8

0.9

1.0

Ea
r-E

CG
Pa

n-T
om

pk
ins

Bi-
RN

N

U-
Ne

t

MF
-PP

O

MF
-S

AC

SM
F-P

PO

SM
F-S

AC

0.5

0.6

0.7

0.8

0.9

1.0

Ar
rh

yt
hm

ia
 E

CG

Fig. 5 Average F-1 scores of R-peak detection, with the main bars as means and the error
bars as standard deviations (where applicable).

Table 2 The p-values in t-tests comparing SMF with the baselines.

Bi-RNN U-Net MF-PPO MF-SAC
Ear-ECG

SMF-PPO 0.000 0.001 0.011 0.001
SMF-SAC 0.000 0.002 0.254 0.004

Arrhythmia ECG
SMF-PPO 0.002 0.001 0.000 0.000
SMF-SAC 0.004 0.002 0.002 0.001

statistically significant compared to the baselines, we performed t-tests and
report the p-values in Table 2. Observe that SMF consistently achieved the
highest average F-1 scores, with low standard deviations compared to the
DL-based methods. Note that although the performance difference between
SMF-SAC and MF-PPO in the ear-ECG dataset was not statistically signifi-
cant (p > 0.05), for both SAC and PPO, their sequential version significantly
outperformed their corresponding non-sequential version.

Our previous work has demonstrated that SMF neural networks can run
in real time on smartphones [27]. In Table 3, we compare the average time
required by SMF and the baseline methods to process a 1.25 s ECG segment.
All methods were averaged over 10 runs across all test segments from the
arrhythmia ECG dataset. All experiments were conducted on an Ubuntu 22.04
system with an Intel Core i7-13850HX CPU and an Nvidia RTX 3500 Ada
GPU. Being faster than the widely used, real-time Pan-Tompkins method,
SMF met the requirement for real-time R-peak detection. Although SMF was
slightly slower than U-Net due to its sequential nature, it outperformed the
Bi-RNN baseline, as its CNN-based architecture enables greater parallelisation
than recurrent models.
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Table 3 Average Processing Time of 1.25 s ECG Segment (10−3 s).

Pan-Tompkins Bi-RNN U-Net SMF-PPO SMF-SAC
4.423 2.421 0.987 1.403 1.372

R-peaks Pan-Tompkins U-Net SMF

Fig. 6 Comparison of the proposed SMF method (SMF-SAC) with the widely used
Pan–Tompkins algorithm and the state-of-the-art U-Net on example ECG segments: (a)
a noisy ear-ECG section containing numerous false peaks caused by non-cardiac artefacts;
(b) an arrhythmia ECG section with varying R–R intervals, which challenge rule-based
approaches such as Pan–Tompkins. In (c), we show SMF procedures applied to an
arrhythmia ECG segment with inverted R-peaks due to improper recording setup. SMF
automatically corrects the inversion by applying signal-aware templates, which remain
interpretable (e.g., a1 corresponds to the inverted R-peak morphology).

6.2 Visualizing the Robustness

This work focuses on R-peak detection in the Hearable setting, where a robust
ECG R-peak detection method must handle prominent false artefact peaks and
ECGs caused by varying patient physiology and recording devices. Figure 6a
shows the performance of SMF (SMF-SAC) for a noisy ear-ECG section, where
false peaks had even greater prominence than the true R-peaks. Nevertheless,
SMF localises all true R-peaks. The raw ear-ECG signal also exhibited a base-
line drift (see the descending trend in Fig. 6a), which was effectively removed
by SMF. Figure 6b shows the performance of SMF on an arrhythmia ECG
section, with a large variance in R-R intervals. The rule-based Pan-Tompkins
method identified only 3 out of the 15 R-peaks, as its decision rule relies on
historical R-R intervals. In contrast, SMF iteratively refined the signal to high
quality, eliminating the need for decision rules based on historical R-R inter-
vals. Figure 6c shows the complete workflow of SMF on an arrhythmia ECG
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segment with inverted R-peaks caused by the misplacement of the recording
ECG leads. Despite the inversions, SMF successfully localised the R-peaks by
generating a series of MF templates with large negative deflections that aligned
with the inverted R-peaks. The results also highlight the interpretability of
SMF. Compared to the MF templates for healthy patients in Fig. 3, which
exhibited more prominent positive deflections, the templates for arrhythmia
patients in Fig. 6c featured more prominent negative deflections. These signal
patterns encoded in SMF templates could be useful indicators for diagnosing
cardiovascular diseases [39].

6.3 Sensitivity Analysis

We now provide more insights into the proposed SMF method by varying its
episode length, reward function, and MF template length. Figure 7 plots the
test set R-peak detection F-1, evaluated at different training steps. For each
design choice, we trained SMF for five independent runs with different random
seeds, and plotted the mean test set F-1 score as solid lines and standard
deviations as shaded areas.

6.3.1 Impact of Sequential Applications of MFs

A key insight of this work is that iteratively applying MFs can overcome
the inherent limitation of single-stage MFs. To verify this, we trained SMFs
with varying episode lengths, i.e., the number of iterative MFs applied, and
evaluated their R-peak detection performance (Fig. 7a). The non-sequential
MF-PPO and MF-SAC with episode length 1 achieved average F-1 scores of
0.95 and 0.91, respectively. As the episode length increased, SMFs achieved
higher F-1 scores on the test set, with the optimal episode length being 3,
where the average F-1 scores were 0.98 and 0.97 for SMF-PPO and SMF-
SAC, respectively. This demonstrates that the iterative application of MFs can
overcome the limitation of non-sequential MFs. When the episode length was
4, the improvement was marginal for SMF-SAC and even negative for SMF-
PPO. We also observed that, as episode length increased, SMFs required more
training steps to converge. These were expected, as the sequential decision-
making nature of the SMF problem means that the number of samples needed
to derive an effective policy grows exponentially with the increase in episode
length. Therefore, it became increasingly difficult to learn a stable policy as
episode lengths increased.

6.3.2 Effect of Template Length

We explored how MF template length affected SMF performance. We exper-
imented with template lengths of 4, 8, 12, and 16 samples in the arrhythmia
ECG dataset (Fig. 7b). The results show that a template length of 4 yielded the
worst performance for both SMF-PPO and SMF-SAC, as such a short template
failed to capture distinctive R-peak patterns. Since the QRS pattern around
R-peaks lasts about 0.08 seconds (16 samples) in adults, longer MF templates
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Fig. 7 Sensitivity of the SMF method to parameter changes. The sub-figures show the test
set F-1 score, evaluated at different training stages in the ear-ECG environment. The solid
lines denote the means, while the shaded areas denote the standard deviations. (a) SMFs
with different episode lengths, i.e., the number of MF iterations applied, in the ear-ECG
dataset. (b) SMFs with different template lengths in the arrhythmia ECG dataset. (c) SMFs
with different reward functions in the arrhythmia ECG dataset.

improve correlation with true peaks while reducing artefact correlation. How-
ever, increasing template length also exponentially expands the action space,
making the sequential decision-making problem more challenging. This effect
was most evident when the template length was 16, where SMF-PPO exhibited
unstable training and lower converged F-1 than SMFs with shorter templates.
The optimal template length was 8 for SMF-PPO and 12 for SMF-SAC. The
SMF-SAC performed better with longer templates due to its higher sample effi-
ciency, as it leverages all past transitions, whereas SMF-PPO learns only from
transitions generated by the current policy. Additionally, SMF-SAC’s entropy
regularisation promotes exploration in a broader state-action space, resulting
in more stable training and enhanced performance.

6.3.3 Influence of Reward Function Design

We examined the impact of the reward function design on SMF performance
(Fig. 7c). For all other experiments in this section, SMF utilised the reward
function in (2). To quantify the effect of reward function design, we compared
this reward design with another straightforward scheme, where the F-1 score
in (6) was used as the reward. For SMF-PPO, although training with the F-
1 score as the reward was slower and less stable, the final converged F-1 was
comparable to that obtained using the reward from (2). For SMF-SAC, using
the F-1 score as the reward significantly hindered performance. As the lower
panel of Fig. 7c shows, SMF-SAC with the F-1 score as the reward function
achieved a test set F-1 score of only around 0.6, which was lower (by > 0.35)
than that achieved with the reward from (2). While using the F-1 score as
the reward reflects the general objective of reducing FP and FN, it does not
differentiate the impact of each type of error straightforwardly. In contrast,
the reward function 10TP− 5FP− 5FN linearly assigns different penalties to
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Fig. 8 Physiological state classification based on R-peaks extracted in ear-ECG recordings.
For each method, the extracted R-peaks were used to compute features for training random
forest classifiers. The average accuracy and normalised confusion matrices were obtained
over 100 MCCVs using a train-test split of 70:30%.

FP and FN, enabling the agent to adjust for each type of error and facilitating
easier learning in the environment.

6.4 Physiological State Classification

As mentioned in Section 1, rich physiological information can be extracted
from R-peaks in ear-ECG. To validate this, we performed a physiological state
classification task using the ear-ECG signal. The classification setup was sim-
ilar to that in [40], where three states were considered: calm, during which
the subject performed controlled deep breathing; normal, where the subject
remained seated and still; and stress, during which the subject solved mental
exercises. Each state was recorded for 300 seconds and split into 25-second
sections, resulting in a total of 36 sections (12 sections per state).

For both SMF and baseline methods, R-peaks were first localised, followed
by the extraction of five widely used Heart Rate Variability (HRV) features:
RMSSD, SDNN, HR, LF, HF, and LF/HF (for details on calculating these
features, please refer to the summary in [41]). These features were then used
to train random forest classifiers. To evaluate classification performance, we
computed the average accuracy and normalised confusion matrices over 100
Monte Carlo Cross-Validation (MCCV) runs using a 70:30% train-test split
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(Fig. 8). The results showed that features derived from SMF-SAC achieved sig-
nificantly higher classification accuracy compared to baseline methods. For the
calm state, SMF-extracted R-peaks led to perfect classifications, a result that
the DL-based methods could not achieve. This highlights the strong potential
of SMF for physiological state monitoring on the edge.

7 Conclusion

Beyond the improved convenience in setup and suitability for prolonged record-
ings, the rise of edge signal acquisition devices has also created a strong demand
for robust, explainable target pattern localisation methods that support trust-
worthy decision-making. A prominent example is the ear-ECG signals with
critically low Signal-to-Noise Ratio, where the reliable localisation of R-peaks
can greatly enhance cardiac monitoring and diagnosis. This work addresses
this challenge by introducing the Sequential Matched Filter (SMF), which
leverages a Reinforcement Learning (RL) agent to design signal-specific fil-
ter sequences for robust and interpretable pattern localisation. The RL agent
of SMF employs lightweight neural network architectures that are suitable
for edge deployment. When evaluated on two challenging real-world ECG
datasets, SMF achieves state-of-the-art R-peak detection performance. At the
same time, it remains fully interpretable by revealing key signal patterns (e.g.,
the QRS patterns in ECG) at each step, thereby supporting trustworthy clin-
ical decision-making and enabling the identification of cardiac abnormalities
or sensor misplacement. Moreover, we empirically demonstrate that SMF’s
improved localisation performance directly enables reliable physiological state
classification on the edge. An intriguing conclusion is that SMF provides a
robust and interpretable digital filter design framework applicable to edge
signal processing tasks beyond the biomedical domain.
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