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Instrumentation of surface plasmon microscopy:
complete scheme of signal extractions

Bei Zhang, Member, IEEE, Haozhe Tian, Tianyu Xiao, and Jing Zhang

Abstract—ODbjective-coupled surface plasmon microscopy
(SPM) features on both extremely high sensitivity and high
resolution. However, this promising system is still operated in labs
without commercial instrument. One big challenge is how to
extract and classify the plasmonic signals from batches of
experimentally acquired back focal plane (BFP) images accurately
and automatically. To solve this problem, this work presents a
complete solution for the first time which significantly promotes
the application and instrumentation of BFP typed SPM in two
aspects: 1) It utilizes an object detection model to pre-determine
the classification and raw localization of plasmonic absorption
profiles for the convenience of subsequent fine detection. 2) It
utilizes self-correlation to identify the plasmonic signal more
accurately; When the mode of plasmonic signal is determined, the
self-correlation procedure can operate independently, with faster
speed and wider applicability than our previously proposed
Fourier correlation analysis. The whole scheme is experimentally
verified on our home-developed SPM. And the performance of the
proposed scheme is illustrated through comparisons with other
approaches.

Index Terms—Surface plasmon microscopy, Back focal plane,
Identification, Classification, Object detection, Self-correlation

I. INTRODUCTION

Surface plasmon (SP) is an oscillation of delocalized
electrons between the metal-dielectric interface. It is
extremely sensitive to surface properties and has great potential
in bio-sensing [1, 2]. Current SP configuration falls into two
categories: prism-coupled (Fig. 1(a)) and objective-coupled
(Fig.1 (b)). Prism-coupled SP configuration has extremely high
sensitivity but suffers relatively low lateral resolution due to the
lateral propagation of SPs [3]. Objective-coupled configuration
localizes SPs into a region comparable to diffraction limit and
further increases the measurement accuracy. With similar
configuration to conventional optical microscopy, it is also
given the name of surface plasmon microscopy (SPM).

So far, various types of SPM have been invented, including
linear and radial polarization mode [3, 4], scanning and wide-
field mode [5-8], intensity and phase mode [4, 9], back focal
plane (BFP) and our previously proposed confocal mode [10,
11], etc. However, most of the existing commercial
configurations are prism-coupled configurations. The latter
objective-coupled SPMs are still operated in labs and no
commercial instruments have been reported, even for the
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simplest BFP-typed SPM (Fig. 1(b)). The main challenge is
how to extract and classify the plasmonic signals from batches
of experimentally acquired BFP images accurately and
automatically.
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Fig. 1 (a). Prism-coupled SP configuration. (b). Object-coupled Surface
plasmon microscopy. (¢). Requirements on BFP profile identification.
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Currently, there are generally three solutions to identify
BFP images: i) 1-D identification, which gives relatively rough
identification results; i7) morphology [11], which is generally
applicable to the case of low coherence noises and concentricity
between the absorption profile and the clear aperture; iii) our
previously proposed Fourier correlation analysis (FCA) [12]. 1-
D identification and morphology do not operate well on
experimentally acquired images with heavy noise. Our
previously proposed FCA solved this problem since it
minimized the influence of random noise and maximized the
symmetric pattern on the BFP. However, even if the influences
of coherent noises are ignored, there are still two issues to be
solved: 1) Previous identification approaches are based on the
strict pre-assumption that all the acquired BFP images contain
obvious absorption profiles with pre-known mode of
polarization. This condition is hard to fulfill in practice,
especially when loads of BFP images are to be identified. 2)
The FCA algorithm may become inapplicable when the SP
profile is in linear mode. It is inevitable to solve the above two
issues in a complete solution to identification of BFP images.

This work is to propose a complete identification scheme to
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solve the two issues in BFP typed SPM above.

For the first issue, the polarization modes of absorption
profiles need to be pre-determined, and BFP images with no
plasmonic signals need to be ruled out. Fundamentally, both of
these requirements refer to the identification of absorption
profiles. Present works propose an object detection model to
solve the issue [13]. Object detection models bring two benefits
to the proposed identification scheme: firstly, it functions for
identification, which allows the pre-determination of
polarization mode and the rule-out of BFP images with no
plasmonic signals; secondly, it functions for the localization of
the absorption profile which helps to determine the region of
interest on BFP images and thus reduce computational cost of
later procedures.

Here the selection of specific object detection model for the
proposed BFP images identification scheme is explained. There
are two stages of object detection models: conventional
machine-learning based (utilizing hand-crafted features), and
deep-learning based (utilizing learned features) [13]. The
present work selects the latter deep-learning based models for
two reasons. Firstly, the deep-learning based object detection
models far surpass conventional models in terms of accuracy
[13, 14]. Secondly, the deep-learning based Object detection
models operate without hand-crafted features [13], which suits
application in BFP typed SPM for its easy configuration. One
may concern that the training of deep-learning based object
detection model is slower and more complicated. Actually, this
is not a problem for its application in BFP typed SPM. Firstly,
the object detection model only needs to be trained once during
configuration. For the experiment stage of identification, the
current object detection models, such as Faster Region-
Convolution Neural Network (Faster R-CNN) [15] and Single
Shot MultiBox Detector (SSD) [16], are fast enough to achieve
real-time performance. Secondly, methods such as transfer

learning can be used to make these deep networks easier to train.

Therefore, the present work selects deep-learning based models
for their high accuracy, easy feature extraction, and fast
identification speed. It is worth noting that the object detection
model in this work is a trial and mainly aims to verify the
proposed complete identification scheme. In future works, other
specific models can also be applied for the identification of BFP
images.

For the second issue, a general solution for identifying
absorption profiles in both linear and radial polarization modes
is needed. To solve this issue, the algorithm of self-correlation
is proposed. To the best of the authors' knowledge, it is the first
time to propose the algorithm of self-correlation in SP
absorption profiles. Different from the previously utilized
Fourier correlation analysis (FCA) which works for BFP
images with radial polarization mode, but only partially works
for BFP images with linear polarization mode (FCA loses effect
when the linear absorption profiles are in a certain position), the
present self-correlation can perfectly work for both of the two
polarization modes with no specific conditions required.
Furthermore, the present self-correlation solution provides a
faster operating speed, which is significantly important for real-
time measurement. A quantitative comparison of FCA and self-

correlation will be given in part ‘V.Discussion’.

The complete BFP images identification scheme is
experimentally verified on our home-developed SPM. And the
performance of the proposed scheme is illustrated through a
comparison with previous BFP identification approaches. To
the best of our knowledge, this is the first time to present a
complete and automatic plasmonic signal extraction and
classification scheme, which promotes the application and
implementation of BFP typed SPM significantly.

II. PRINCIPLE AND METHODOLOGY

SPM reflects the surface property of plasmonic sample by the
excitation angle of SPs. In BFP typed SPM, the excitation angle
of SPs is measured according to the locations of SP profile and
clear aperture (CA). When the illuminant is in linear or radial
mode, the SP profile on the reflected BFP appears as a pair of
crescents or a complete circle [11]. Fig. 2 shows the principle
of the proposed identification solution. It mainly contains two
parts: A. classification of BFP images and raw localization of
profiles, and B. fine detection of SP and CA profiles. The object
detection model of Faster R-CNN and the algorithm of self-
correlation are responsible for the two part respectively.

Part A: Classification & Raw localization

Deep-learning network

| Classification & localization |

No SP Linear SP Radial SP
V( N —Aperture
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Fig. 2. Principle of the proposed identification solution. Part A: classification
and raw localization of SP and CA profiles using Faster R-CNN. Part B: B;.
Center-detection using self-correlation. B,. Radii measurement using intensity
statistics. B;. Calculation of excitation angle.

Part A. Classification and Raw Localization

As mentioned before, there are generally three categories of
BFP images: image with no SP profile, image with linear SP
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profile, and image with radial SP profile. Before precise
location of the SP and CA profiles, the classification and raw
localization of SP profiles should be performed in advance. In
this work, the Faster R-CNN is utilized to accomplish this task
[15]. The principle of Faster R-CNN is shown in Fig. 3. It can
generally be divided into two stages. In stage 1, Faster R-CNN
uses a neural network called region proposal network (RPN) to
roughly localize SP and CA profiles in the form of bounding-
boxes [15]. In stage 2, profiles localized in stage 1 are classified
into the three categories mentioned above. In particular, the
images with no SP profile are taken as singularities and ruled
out in subsequent procedure. In the meanwhile, stage 2 of Faster
R-CNN also amends the localization result generated in stage |
for convenience of subsequent identification. Readers can refer
to [15] for more technical details. And the reasons for choosing
Faster R-CNN are given in the discussion in Section IV.

Localization and classification by Faster R-CNN provides
great convenience for subsequent identification of SP and CA
profiles. However, although the approximate radii of SP and
CA are given by localization of Faster R-CNN, they are not
accurate enough. There are mainly two reasons for error in radii
given by Faster R-CNN: First, the structure of Faster R-CNN
determines that it only generates numerical solutions which are
approximations of the radii. Second, training of Faster R-CNN
might introduce error. Faster R-CNN is trained by a manually
marked training set. The manual marking process totally
depends on human eyes and induces errors more or less.
Besides, the training of network might be insufficient to find
the optimal coefficients due to slight overfitting or underfitting.
Both the two kinds of errors are inevitable in most of object
detection networks. Therefore, fine detection based on self-
correlation and intensity statistics is proposed to accurately
measure the radii of SP and CA.

9
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Fig. 3. Schematic drawing of Faster R-CNN. Faster R-CNN is a two-stage
object-detection network that is able to classify and localize target object (SP
and CA profiles in this work). Stage 1 is to use RPN to localize SP and CA
profiles roughly. Stage 2 is to rectify localization generated in stage 1 and
classify the SP profiles.

Part B. Fine Detection

The procedure of fine detection of SP and CA profiles is
shown in Fig. 4. It contains three main steps: (B:) using self-
correlation to identify the center of BFP; (B,) using intensity
statistics to determine SP and CA profiles and measure their
radii; (B3) using radii of SP and CA to calculate excitation angle.
The detailed process is illustrated as follows.

B,:Self-correlation Rotated 57

7). 180° rotation Original
(N-1,M-1)

\4 x
B,:Intensity statistics

Experiment
grayscale statistics

£
A = Center i,SP{ [CA
\ 4 Radius
B;:Excitation angle ,

R/5inG,,0=r/51n0y,

Fig. 4. Process of fine detection. B1: 2-D convolution is performed between
the BFP images before and after a rotation of 180°. The profile center is
determined according to the maximum of the convolution. B2: Determine the
radii of SP and CA profiles by radial intensity statistics. Intensity statistics curve
is obtained by calculating average intensity of circles with radius ry in range [0,
R.,»] (R is a radius bigger than the radius of CA profile). SP and CA are
identified on the intensity statistics curve. B3: Calculate the excitation angle.

(B1) Self-correlation

SP and CA profiles are both center symmetric patterns. Self-
correlation which maximizes the symmetric pattern and
minimizes the random noise on the BFP image [12, 17] is
utilized to detect the centers of the two profiles. Procedures of
self-correlation is shown in Fig. 4(B,). First, the original BFP
image is rotated by 180°. Second, the 2-D convolution between
the origin BFP image and the rotated image is calculated

according to the following equation:
w=1l h-1

glnm)=Y">" f(x,y)- f(n—x,m—y) (1)

x=0 y=0
The value of 2-D convolution reflects the level of coincidence
of the original image with the rotated image. Since both SP and
CA profiles are center symmetric profiles (SP and CA), the BFP
has little change before and after the rotation of 180°. And the
maximum value of 2-D convolution occurs when the center of
original image coincides with that of the rotated image.
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Supposing the maximum occurs at the position of (N, M), the
profile center (Xcenter, Yeenter) i8:

N -1

xCGnlL’I‘ = T
2
M1 2

ycenter = T

According to property of convolution in spatial domain, one
can also calculate the self-correlation by two-dimensional
Fourier transformation.

gnm)=F "FLf ]I FLAEN 3
Equation (3) is actually a circular convolution, which generates
multiple solutions and thus requires priori knowledge of BFP

profile location. For simplification, (1) is used in this work to
calculate self-correlation.

(B2) Intensity Statistics

The schematic diagram of intensity statistics is shown in Fig.

4(B.,). Intensity statistics operates on the center determined by
self-correlation. First, intensity statistics curve is obtained from
BFP images. Consider radius 7 in range [0,R,;,] (R, is a radius
bigger than the radius of CA profile). For a certain ry, average
intensity of pixels with a distance of ry from the center is
calculated. Since the calculation takes a ring of pixels into
account, effect of random noises is removed. By calculating
average intensity for ryin range [0,R,,], an intensity statistics
curve is obtained. Intensity statistics curve of a schematic BFP
image is shown in Fig. 4(B>). The horizontal axis of the curve
is radius and the vertical axis of the curve is intensity. Second,
the radii of SP and CA profile are identified based on the
intensity statistics curve. The radius of SP profile 7 is located at
the radius with minimum intensity (marked by the red point)
and the radius of CA profile R is located at the radius with the
minimum difference (marked by the blue point).

(B3) Calculation of excitation angle

In BFP-typed SPM, the relationship between the excitation
angle of SPs 6, and the maximum focusing angle &y is
characterized by Abbe’s sine condition:

r/sin@, =R/sin6, 4

where r is the radius of SP, R is the radius of CA profile. For a
given system, the sine of the maximum focusing angle is
determined according to the numerical aperture (NA) and
refractive index of immersion medium » of the objective lens:

sin@,,, =NA/n &)
By substituting Eq. 5 into Eq. 4, the excitation angle 6, can be
calculated by:
6 =arcsin (MLJ (6)
b n R

Here the measurement process is accomplished.

III. CONFIGURATION
A. Experiment configuration

A surface plasmon microscopy (SPM) system is configured
to obtain BFP images. The polarization mode is controlled to

obtain both the BFP images of both linear and radial modes.
And the tested samples are prepared to obtain both BFP images
with and without the absorption profiles. Fig. 5 shows the
details of experiment configuration. Fig. 5(a) gives the
schematic diagram of optical arrangement. A laser is utilized as
illumination. After collimated and expanded by a beam
expander, the incident beam was then focused on the plasmonic
sample by an oil-immersion objective lens. And the conjugate
plane of the reflected BFP is finally imaged by lens 3 and lens
4 and recorded by the CCD camera. Fig. 5(b) shows the
practical experiment configuration. A He-Ne laser with a
wavelength of 632.8nm is utilized as the illumination source.
An 100X oil-immersion objective lens with a N4 of 1.25
(@Olympus) is utilized to excite the plasmonic signal.
Considering that the reference tube length of the objective by
Olympus is 160mm, the corresponding focal length of the
objective is given by 160/100=1.6mm. As a result, the
corresponding diameter of the CA is 2fNA, which is 4mm in this
case. The beam waist of the applied He-Ne laser is 0.8mm and
a 5X of beam expander is applicable. However, to obtain a more
uniform illumination, a 10X beam expander is utilized in our
experiment system. The tested samples are mounted above the
objective lens (See the blue block in Fig. 5(b)). The detailed
structure of the multi-layer sample is enlarged on the right side
of Fig. 5(b) for clear illustration. It utilizes the classical
sandwiched structure and consists of Inm Ti, 46nm Au, and
5/10/15nm MgO. A Charge Coupled Device (CCD) with the
pixel size of 3.75um and resolution of 968x1024 is utilized to
image the BFP which gives the CA and SP signals. To acquired
BFP images which takes sufficient pixels on the CCD detector,
the actual BFP of the objective is shrunk by 2.67 times by the
Lens 3 (/=200mm) and Lens 4 (/=75mm). Fig. 5(c) shows the
recorded BFP images in three categories: with no SP profile,
with linear SP profile, and with radial SP profile.

B. Construction of object detection model

In this work, the Faster R-CNN is utilized to implement the
classification and raw localization of BFP images. The
construction procedure of the Faster R-CNN model is
demonstrated in Fig. 6(a), which contains three steps: 1)
creation of dataset, 2) training of Faster R-CNN, and 3)
evaluation of Faster R-CNN.

1) Creation of dataset

BFP images obtained on our home-developed SPM are used
as the original dataset, based on which a validation set and a
train set are created. The procedure of dataset creation is shown
in Step 1 of Fig. 6, which mainly contains three operations.

Firstly, BFP images are acquired from our home-developed
BFP-typed SPM. Images with severe noise are discarded. The
rest of the images with obvious profiles are manually classified
into three classes: no SP, linear SP, and radial SP.

Secondly, a validation set is created. More specifically, the
validation set consists of 1000 pieces of randomly selected
images from the three categories of original BFP images, on
which the bounding boxes of SP and CA profiles are manually
marked (the squares on BFP images in Fig. 6 Step 1). Each side
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of the bounding box is tangent to the SP or CA profile and is
considered to be error free. And half of the length of the
manually marked bounding boxes are later considered as the
ground-truth of the radii of SP and CA profiles 74, and R.,.. The
two parameters are involved in later evaluation of Faster R-
CNN. This validation set is only created for hyper-parameter
tuning and evaluation of the training Faster R-CNN model. For
complete evaluation of the proposed identification scheme,
BFP Images (test set) that are not involved in the training of
Faster R-CNN will be used. Detailed evaluation of the complete
identification scheme is in section ‘IV. Experimentation’.

Conjugate

Camera
BFP

(@)
Lens 4

.................. Objective ..

0y
"\

“Beam  Beam ppp
expander  splitter
Sample
Ti Au
MgO
Sl{bstrate

No SP Radial SP

Fig. 5. Experiment configuration. (a) Schematic diagram of optical
arrangement. (b) Experimental configuration (He-Ne laser with a wavelength
of 632.8nm and 1.25NA objective lens) and structure of the multi-layer sample
(1nm Ti, 46nm Au, and 5/10/15nm MgO). (c) Three categories of recorded BFP
images.

Linear SP

Thirdly, a train set is created to train Faster R-CNN. In the
training process, the Faster R-CNN model might overfit data
when the train set is too small. In order to attenuate overfitting,
the original BFP images are augmented. During data
augmentation, new images are generated from experimentally
obtained images. Data augmentation in this work involves
several operations: 1) random cropping, 2) random mitroring,
3) random rotation, 4) random adjustment of brightness, and 5)
random adjustment of contrast. Random cropping means the
generated images will be cropped into smaller images
containing SP profiles and then reshaped into their original size.
Random mirroring means the generated images has 33.3%
chance to be mirrored along the x-axis and 33.3% chance to be
mirrored along the y-axis. Random rotation means the

generated image will be randomly rotated and then cropped and
reshaped into their original size. Random adjustment of
brightness means the contrast of the generated images will
change between the value of 32 and 255. Random adjustment
of contrast means the contrast of the generated images will
change between the value of 0.5 and 1.5. For the detailed
realization of these operations, readers can refer to the official
TensorFlow document of data augmentation functions [18].

After augmentation, the images are manually marked with
bounding boxes, which serves as the ground truth to train the
localization ability of Faster R-CNN. The number of augmented
images is related to the amount and quality of the original
images. Generating a large number of images would increase
the accuracy of Faster R-CNN, but also result in a long training
time. The Faster R-CNN exhibits adequate identification
accuracy on the validation set when the original images are
augmented to 5000 images.

Step 1: Creation of
dataset

Original BFP images ]

Manual Classification —>+l

Linear SP

No SP

Radial SP

o

<«— Augmentation
<«— Manual marking

Manual marking —

A\ 4 A4

Validation
set

set

|
. M
Pre-trained Train

‘ Train

Step 2: Training of
Faster R-CNN

Step 3: Evaluation of v

Faster R-CNN Evaluation

Error distribution of SP profiles Error distribution of CA profiles

Mean Mean

Frequency
Frequency

0 error 0 error

Fig. 6. Construction of Faster R-CNN. Step 1: creation of dataset. Step 2:
training of Faster R-CNN and the output image of well-trained Faster R-CNN.
Step 3: evaluation of Faster R-CNN.

2) Training of Faster R-CNN

Faster R-CNN is made up of many layers and each layer
have many coefficients. To implement the function of SP and
CA profiles identification and classification, one needs to train
the network and update these coefficients. Training all the
layers of Faster R-CNN is extremely time-consuming. Here we
apply the transfer learning which is to train the last few layers
of a pre-trained model [19]. A pre-trained Faster R-CNN model
[20] from the TensorFlow 1 Detection Model Zoo is utilized in
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this work. Fig. 6 Step 2 shows a schematic drawing of the Faster
R-CNN model. The model is based on inception-v2 and is
trained with the COCO dataset. For details of this model
(training data, number of layers, etc.) readers can refer to [20,
21]. The train set created above is applied to this model to train
its ability to identify SP and CA profiles. Gradient descent with
momentum is used for optimization. TABLE lists the training
configurations applied in transfer learning.

TABLEI
TRAINING CONFIGURATIONS
Configuration Value
Batch size 4
Initial Lr 0.001
Lr after 20000 iterations 0.0001
Lr after 50000 iterations 0.00001

Momentum 0.9
Maximum number of iterations 100000

Lr is the abbreviation of learning rate.

3) Evaluation of Faster R-CNN

The Faster R-CNN is evaluated with the validation set
(ground-truth). After training, the network is capable of

automatically generating bounding boxes of SP and CA profiles.

Half the length of the automatically marked bounding boxes are
taken as the estimated radii of SP and CA profiles 7.y and Re
respectively. These two parameters are involved in later
evaluation of Faster R-CNN.

Two aspects are considered in the evaluation process: i)
accuracy of classification and localization, i7) accuracy of size
measurement.

i) The accuracy of classification and localization is
evaluated by the terms Average Precision (AP) and mean
Average Precision (mAP), both of which are numbers range
from zero to unity. AP is a widely utilized metric in object
detection, which is positively related to the identification
accuracy. Identification of each categories of profiles generates
an AP. Readers can refer to [22] for more details on definition
and calculation process of AP. As for the term mAP, it reflects
the overall performance of the object detection model and is
defined as the arithmetic mean of the APs of CA, linear SP, and
radial SP profiles. TABLE II shows the AP and mAP of Faster
R-CNN on validation set. Both of them are close to unity, which
indicates the high accuracy of the trained network.

ii) The accuracy of size measurement is evaluated by the term
confidence interval, which denotes the range where the
measured profile size locates with a certain probability.
Similarly, the confidence interval is evaluated with the
validation set to Faster R-CNN. TABLE III lists notations and
the corresponding explanations involved in determination of
confidence interval.

Step 3 in Fig. 6 shows the measurement error of SP profiles
er and CA profiles er. Both of them can be regarded as normal
distributions according to the central limit theorem. The mean
values and standard deviations of the two distributions are
calculated and the results are listed in TABLE IV. Since
standard deviations of error distribution of e, and e equal to

those of 7.y and R.y, SP and CA profiles locates in the regions
of r,*30, and R, +30, with a probability of 99.74%

est — est —
respectively. In the later fine detection, the accurate radii of SP
and CA profiles are determined in the corresponding regions to
reduce computational cost.

TABLE II
AP AND MAP OF IDENTIFICATION
AP of CA AP of linear SP AP of radial SP
file mAP
profile profile pro
0.9991 0.9994 0.9996 0.9994
TABLE III
NOTATIONS
Notations Explanations
Toru Ground truth of SP radius (manually marked)
Riru Ground truth of CA radius (manually marked)
Fest Estimated SP radius by Faster R-CNN
Rest Estimated CA radius by Faster R-CNN
er Error of SP radius estimation (rese minus rir)
er Error of CA radius estimation (Rest minus Rir)
r Mean value of e,
UR Mean value of er
or Standard deviation of e,
OR Standard deviation of er

Radius equals to half the length of bounding box. 7, and R, are calculated
from manually marked bounding boxes (Step 1 of Fig. 6). r., and R, are
calculated from bounding boxes generated by Faster R-CNN (Step 2 of Fig. 6).
e,equals to 7., minus r4,,. egequals to R, minus Ry,.

TABLE IV
MEAN VALUE AND STANDARD DEVIATION OF SPS AND CAS
Value
W 9.9x10°?
or 2.5x103
UR 4.2x10*
OR 2.3x1073

IV. EXPERIMENTATION

To test the complete identification scheme, the proposed
solution is applied to the identification of SP and CA profiles
on BFP images captured with our home-developed SPM (test
set). These captured images are neither in the train set nor the
validation set.

Part A. Classification and Raw Localization

The well-trained Faster R-CNN classifies the BFP images
and marks bounding boxes of SP and CA profiles automatically.
BFP images with no SP signal are ruled out in the meanwhile.
Since the SP and CA profiles only take up a small part of the
whole image, the Faster R-CNN further crop the whole image
into a smaller region of interest (Rol), whose length is actually
20 pixels larger than the length of the bounding box of CA. Fig.
7(a) shows some identification results and the cropped Rols of
the Faster R-CNN. By running later procedures only in the
cropped Rols, identification speed is increased with less data to
be processed. The accuracy of identification is also improved
because noise in the background is removed.
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Part B. Fine detection

Part B fine identification operates within the Rol provided by
the faster R-CNN. The experimental procedure is shown in Fig.
7. It contains three steps: (Bi) self-correlation for center
identification, (B,) Intensity statistics for radii determination,
and (B3) calculation of excitation angle of SPs. Details of the
three steps will be discussed in the following.

1) Self-correlation for center identification

According to the principle in Section II, the self-correlation
enables to identify the center of axial symmetric shape or center
symmetric shape in one step. This principle assumes that the
pattern has only one center of symmetry, which requires a well-
manufactured and well-assembled system configuration. In
practical experiment, one needs to exclude the cases where the
CA and SP profiles have different centers.

In this work, the centers of CA and SP profiles are identified
respectively to see whether they are identical, as shown in Fig.
7(B1). To identify centers with self-correlation, the CA and SP
profiles on the BFP image should be separated first. The CA
and SP profiles are separated by MET (minimum error
thresholding) and RMET (radius-based minimum error
thresholding) respectively [11, 23]. After that, the separated
profiles are binarized, which is an inevitable requirement of
self-correlation. 2-D convolution is conducted between the
binarized image and its 180° rotation. The centers of CA and
SP profile are determined according to the convolution results.
Based on the principle from section II, centers are located at the
maximum points of convoluted image. For most of the BFP
images captured by our SPM, the two identified centers are
nearly identical. One can take either of the two as the
determined center of the BFP image. Several extreme cases
where the centers of CA and SP profiles deviate from each other
for more than 2 pixels are discarded to avoid severe
measurement errors.

2) Intensity statistics for radii determination

In order to determine the radii of CA and SP profiles, the
intensity statistics of the BFP image is calculated. Intensity
statistics has two elements: center of intensity statistics, and
interval of intensity statistics.

The center of intensity statistics is identical with the image
center determined by self-correlation. The interval of intensity
statistics is determined by the confidence interval of Faster R-
CNN. To identify SP and CA profiles, the intensity statistics is
conducted in the range of r,, 30, (red region in Fig. 7(B>))

st T
R, t30,

est —

and (blue region in Fig. 7(B;)) respectively.

Intensity statistics curve is formed by evaluating radii in these
ranges. Radius of SP profile is located at the radius with
minimum intensity. And radius of CA profile is located at the
radius with minimum difference.

3) Excitation angle

According to (5), excitation angle (EA) of SPs is determined
by using the radii of SP and CA profiles. The measured
excitation angles of different plasmonic samples are listed in
TABLE V, which show a good consistence with the theoretical

values calculated by Fresnel equations [24].

Part A: Classification & Raw localization
Identification results of Faster R-CNN
Faster R-CNN outputs

\ 4 No SP
Generate Rol

Linqar SP RadlalI SP
l+<— Crop —:l

Rol

(2)

Part B: Fine detection

B1:Self-correlation

Rol

Seperation & .
& f S
Binaryzation 3
"~ -
I N
Convolution

CA center SP center

H_/

Undgmmon Center Common Center

A 4
B2: Intensity statistics

Fesi30,  Resit3op

't

Intensity

N
Center Fessw Rew
Radius
\ 4 Common Center
B3: Excitation angle i A r
sinfy,=——"—F%—
n R
(b)

Fig. 7. Identification of SP and CA profiles has two parts. (a). Classification
and Raw localization: The original outputs of Faster R-CNN in the experiment
shows that Faster R-CNN achieves classification and localization. (b). Fine
detection: B1: Separate SP and CA profiles and identify their respective centers.
B2: Measure radii of SP and CA profiles on the intensity statistics curve. B3:
Calculate excitation angle. The linear SP profile is taken as the example.
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TABLE V
RESULTS OF EXCITATION ANGLE MEASUREMENT

Snm 15nm 20nm

MgO MgO MgO
CA radius/Pixels 267 267 267
SP radius/Pixels 228 237 244
Measured excitation 44.7 470 488
angle/degree
Theoretical excitation 44 4 465 481
angle/degree

theoretical excitation angles are calculated by Fresnel equations.

V. DISCUSSIONS

In this section, the performances and advantages of the Faster
R-CNN and self-correlation are discussed. More specifically, a
quantitative comparison in procedure, accuracy, and speed is
made between the Faster R-CNN and SSD, another object
detection model. The advantages of self-correlation in
universality and speed when compared with our previously
proposed FCA is also illustrated.

A. Faster R-CNN versus SSD

Faster R-CNN SSD
| |

ao Nt
Stage 1 Qhature Stage 1 Feature map |
map
RPN Feature map 2
(a) Rough Localizations
fStage 2 éFeature map n
Rectification Classification = L 5
| Non-maximum regression
Classification & Localization || Classification & Localizatiol

Accuracy

0.9981 0.9991 0.9994 0.9996

I 0.9900I 09827'
(b)

—I —I >
?

0.90
AP of AP of AP of
CA linear SP radial SP
Time-cost Fssp
P Faster R-CNN
233
© 386

Run-time/s

Fig. 8. (a) structure of Faster R-CNN and SSD. (a). Accuracy of SSD and Faster
R-CNN in BFP-typed SPM (b). Time-cost of SSD and Faster R-CNN on an
Intel(R) Core(TM) i5-6600 CPU.

Fig. 8 demonstrates the comparison between Faster R-CNN
and SSD in principle (Fig. 8(a)), accuracy (Fig. 8(b)), and speed
(Fig. 8(c)) respectively. As shown in Fig. 8(a), Faster R-CNN
is a typical two-stage identification network. In stage 1, Faster
R-CNN localizes the target object roughly by using RPN [15]
which makes Faster R-CNN have better performance in speed

than many other two-stage identification networks, such as R-
CNN [14] and Fast R-CNN [25]. In stage 2, the localization
generated by RPN is rectified, and the target object is classified.
By contrast, SSD [16] is a typical one-stage identification
network. SSD extracts multiple feature maps of input image to
classify and locate objects at the same time on all feature maps
[16]. Final output is provided by non-maximum regression is
SSD.

For a quantitative comparison between Faster R-CNN and
SSD, the previous transfer learning approach (TABLE 1) is
utilized to transfer learn a pretrained SSD model [26] from
TensorFlow 1 Detection Model Zoo. The model is also
pretrained with the COCO dataset. For details of this model
(training data, number of layers, etc.) readers can refer to [21,
26].

Fig. 8(b) shows the comparison in accuracy of the two
networks. The term AP is utilized as the criterion. One can see
that the Faster R-CNN is always more accurate than SSD. And
this advantage of Faster R-CNN become more obvious when
the identified SP profiles are in radial mode. Fig. 8(c) shows the
time-cost of the two networks for identification of images
obtained from the home-developed SPM. The identification is
operated on Intel(R) Core(TM) i15-6600 CPU. It shows that the
SSD is faster than Faster R-CNN.

The comparison results of the two networks are listed in
TABLE VI. Faster R-CNN operates slower but with higher
accuracy. This is because the second stage of Faster R-CNN
offers correction of localization provided by the first stage,
making identification more accurate but slower. Since the
identification accuracy is much more essential in micro-Nano
detection, Faster R-CNN is chosen in the experiment.

TABLE VI
PERFORMANCE OF SSD AND FASTER R-CNN
SSD Faster R-CNN
Accuracy lower Higher
Time-cost faster slower

B. Self-correlation versus FCA

Fig. 9 shows that the proposed self-correlation method has
two advantage over the previously proposed FCA.

First, FCA may become ineffective in center identification of
linear SP profile. The case is shown in Fig. 9(a;). FCA
convolutes original profile with horizontally/vertically flipped
profile and use maximum of correlation coefficient to
determine the horizontal/vertical location of the center of SP
profile [12]. However, when the centers of the original profile
and the flipped profile coincide, correlation-coefficient is
always zero. In this case, one cannot figure out the location of
the profile center. By contrast, self-correlation is applicable to
center identification of all kinds of profiles including CA profile,
linear SP profile, and radial SP profile. When the SP profile is
in linear mode, self-convolution is still able to find the
maximum of the correlation-coefficient (a,).

Second, self-correlation determines center faster than FCA.
In FCA, two convolution operations are required to determine
the horizontal and vertical coordinates of the center respectively.
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By contrast, self-correlation only utilizes one convolution
operation to determine the center location. Fig. 9. (b) is a
comparison of FCA and self-correlation in time-cost when
applied to separated and binarized profiles. Both of them
operate on Intel(R) Core (TM) i5-6600 CPU. The result shows
an obvious advantage of self-correlation in calculation speed.
When the mode of plasmonic signal is determined, the self-
correlation procedure can operate independently, which means
an extremely fast identification process.

(a;) FCA (az) Self-correlation
Vertical or
horizontal flip

Linear SP Linear SP

180° rotation

Convolution

Convolution
w No Center
correlation determined
(a)

Tl FCA
I Self-correlation

-

Time-cost

| . 0.052

B 0.030 .

(b)

Fig. 9. (a;). How FCA cannot be used to identify linear SP placed in a certain
location. (a,). Application of self-correlation to identify the linear SP which
FCA cannot identify. (b). Average time-cost of FCA and Self-correlation.
Measurement of time-cost is conducted with an Intel(R) Core(TM) i5-6600
CPU.

Run-time/s
N

7

VI. CONCLUSION

In this work, a complete and feasible solution to identify BFP
absorption profile was proposed and applied to excitation angle
measurement. Both principle and experimental verification of
the proposed solution were provided. Furthermore, the Faster
R-CNN was shown to be more accurate than SSD despite
relatively slower calculation speed. Self-correlation was also
demonstrated to be more universal and faster than the previous
FCA. To the best knowledge of the authors, this is the first time
to present such a complete, automatic, and accurate solution for
signal extraction of BFP typed SPM. This work greatly
promotes the application and instrumentation of BFP typed
SPM. It is worth noting that the object detection model in this
work is a trial and mainly aims to verify the proposed complete
identification scheme. In future works, other specific models
can also be applied for the identification of BFP images.

we have uploaded all the data and codes to the submission
system for the readers to reproduce the algorithm. The complete
identification scheme in this work will be available at
http://ieeexplore.ieee.org, which includes test images and
Python executables (206MB)

[1] M. Bockova, J. Slaby, T. Springer, and J. Homola, "Advances in
surface plasmon resonance imaging and microscopy and their
biological applications," Annu. Rev. Anal. Chem., vol. 12, pp. 151-
176, 2019.

[12]

[13]

[14]

[15]

[19]

[20]

(21]

[22]

(23]

[24]

S. Rampazzi, G. Danese, F. Leporati, and F. Marabelli, "A localized
surface plasmon resonance-based portable instrument for quick on-
site biomolecular detection," IEEE Trans. Instrum. Meas.,, vol. 65,
no. 2, pp. 317-327, 2015.
H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-
plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B.,
vol. 15, no. 4, pp. 1381-1386, 1998.
K. Moh, X.-C. Yuan, J. Bu, S. Zhu, and B. Z. J. O. l. Gao, "Radial
polarization induced surface plasmon virtual probe for two-photon
fluorescence microscopy," Opt. Lett., vol. 34, no. 7, pp. 971-973,
2009.
H.-M. Tan, "High resolution angle-scanning widefield surface
plasmon resonance imaging and its application to bio-molecular
interactions," University of Nottingham, 2011.
H.-M. Tan, S. Pechprasarn, J. Zhang, M. C. Pitter, and M. G. J. S. 1.
Somekh, "High resolution quantitative angle-scanning widefield
surface plasmon microscopy," Sci. Rep., vol. 6, p. 20195, 2016.
J. Zhang, C. See, and M. J. A. o. Somekh, "Imaging performance of
widefield solid immersion lens microscopy," Appl. Optics, vol. 46,
no. 20, pp. 4202-4208, 2007.
B. Huang, F. Yu, and R. N. Zare, "Surface plasmon resonance
imaging using a high numerical aperture microscope objective,"
Anal. Chem., vol. 79, no. 7, pp. 2979-2983, 2007.
S.-F. J. L.-Z. Hsieh, L.-B. Chang, C.-C. Hsieh, and C.-M. Wu,
"Heterodyne interferometric surface plasmon resonance biosensor,"
J. Med. Biol. Eng., vol. 26, no. 4, pp. 149-153, 2006.
B. Zhang, "Measuring plasmonic phase using radially polarized
confocal surface plasmon interferometer," /EEE Trans. Instrum.
Meas., vol. 69, no. 10, pp. 7781-7786, 2020.
B. Zhang, C. Zhang, Q. Wang, P. Yan, and J. J. I. P. J. Wang,
"Identification of plasmonic absorption profile in surface plasmon
microscopy using morphology," IEEE Photonics J., vol. 10, no. 6,
pp. 1-9, 2018.
B. Zhang, Q. Wang, A. Li, and X. J. I. P. J. Wang, "Direct and
Practical Identification for Back Focal Plane Based Surface Plasmon
Microscopy," IEEE Photonics J., vol. 12, no. 1, pp. 1-8,2019.
Z. Zou, Z. Shi, Y. Guo, and J. Ye, "Object detection in 20 years: A
survey," arXiv preprint arXiv:1905.05055, 2019.
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature
hierarchies for accurate object detection and semantic
segmentation," in CVPR, Columbus, Ohio, USA, 2014, pp. 580-587.
S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-
time object detection with region proposal networks," in Adv.
Neural. Inf. Process. Syst., Montreal, Quebec, Canada, 2015, pp. 91-
99.
W. Liu et al., "Ssd: Single shot multibox detector," in ECCV,
Amsterdam, Netherland, 2016: Springer, pp. 21-37.
B. Zhang and T. J. O. L. Xiao, "Avenue for apertometer using
spectral plane and Fourier correlation analysis," Opt. Lett., vol. 44,
no. 17, pp. 4315-4318, 2019.
TensorFlow. Module: tf.keras.preprocessing.image | TensorFlow
Core v2.4.1 [Online] Available:
https://tensorflow.google.cn/api_docs/python/tf/keras/preprocessin
g/image
S.J.Pan and Q. Yang, "A survey on transfer learning," /[EEE Trans.
Knowl. Data. Eng., vol. 22, no. 10, pp. 1345-1359, 2009.
Tensorflow.org. faster_rcnn_inception_v2_coco [Online] Available:
http://download.tensorflow.org/models/object_detection/faster_rcn
n_inception v2 coco 2018 01 28.tar.gz
Tensorflow.org. TensorFlow 1 Detection Model Zoo [Online]
Available:
https://github.com/tensorflow/models/blob/master/research/object
detection/g3doc/tfl_detection_zoo.md
M.J.D.o.S.Zhuand U. 0. W. Actuarial Science, Waterloo, "Recall,
precision and average precision," vol. 2, p. 30, 2004.
J. Kittler and J. Illingworth, "Minimum error thresholding," Pattern.
Recognit., vol. 19, no. 1, pp. 41-47, 1986.
A. W. Peterson, M. Halter, A. L. Plant, and J. T. J. R. o. S. L. Elliott,
"Surface plasmon resonance microscopy: Achieving a quantitative
optical response," Rev. Sci. Instrum., vol. 87,n0. 9, p. 093703, 2016.
R. Girshick, "Fast r-cnn," in /CCV, Santiago, Chile, 2015, pp. 1440-
1448.
Tensorflow.org. ssd_mobilenet vl _coco [Online] Available:
http://download.tensorflow.org/models/object_detection/ssd mobil
enet vl _coco 2018 01 28.tar.gz



http://ieeexplore.ieee.org/
https://tensorflow.google.cn/api_docs/python/tf/keras/preprocessing/image
https://tensorflow.google.cn/api_docs/python/tf/keras/preprocessing/image
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
https://www.researchgate.net/publication/350776618

	I. INTRODUCTION
	II. Principle and Methodology
	Part A. Classification and Raw Localization
	Part B. Fine Detection
	(B1) Self-correlation
	(B2) Intensity Statistics
	(B3) Calculation of excitation angle


	III. Configuration
	A. Experiment configuration
	B. Construction of object detection model
	1) Creation of dataset
	2) Training of Faster R-CNN
	3) Evaluation of Faster R-CNN


	IV. Experimentation
	Part A. Classification and Raw Localization
	Part B. Fine detection
	1) Self-correlation for center identification
	2) Intensity statistics for radii determination
	3) Excitation angle


	V. Discussions
	A.  Faster R-CNN versus SSD
	B. Self-correlation versus FCA

	VI. Conclusion

