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Abstract—Objective-coupled surface plasmon microscopy 

(SPM) features on both extremely high sensitivity and high 
resolution. However, this promising system is still operated in labs 
without commercial instrument. One big challenge is how to 
extract and classify the plasmonic signals from batches of 
experimentally acquired back focal plane (BFP) images accurately 
and automatically. To solve this problem, this work presents a 
complete solution for the first time which significantly promotes 
the application and instrumentation of BFP typed SPM in two 
aspects: 1) It utilizes an object detection model to pre-determine 
the classification and raw localization of plasmonic absorption 
profiles for the convenience of subsequent fine detection. 2) It 
utilizes self-correlation to identify the plasmonic signal more 
accurately; When the mode of plasmonic signal is determined, the 
self-correlation procedure can operate independently, with faster 
speed and wider applicability than our previously proposed 
Fourier correlation analysis. The whole scheme is experimentally 
verified on our home-developed SPM. And the performance of the 
proposed scheme is illustrated through comparisons with other 
approaches.  
 

Index Terms—Surface plasmon microscopy, Back focal plane, 
Identification, Classification, Object detection, Self-correlation 

I. INTRODUCTION 

urface plasmon (SP) is an oscillation of delocalized 
electrons between the metal-dielectric interface. It is 

extremely sensitive to surface properties and has great potential 
in bio-sensing [1, 2]. Current SP configuration falls into two 
categories: prism-coupled (Fig. 1(a)) and objective-coupled 
(Fig.1 (b)). Prism-coupled SP configuration has extremely high 
sensitivity but suffers relatively low lateral resolution due to the 
lateral propagation of SPs [3]. Objective-coupled configuration 
localizes SPs into a region comparable to diffraction limit and 
further increases the measurement accuracy. With similar 
configuration to conventional optical microscopy, it is also 
given the name of surface plasmon microscopy (SPM).  

So far, various types of SPM have been invented, including 
linear and radial polarization mode [3, 4], scanning and wide-
field mode [5-8], intensity and phase mode [4, 9], back focal 
plane (BFP) and our previously proposed confocal mode [10, 
11], etc. However, most of the existing commercial 
configurations are prism-coupled configurations. The latter 
objective-coupled SPMs are still operated in labs and no 
commercial instruments have been reported, even for the 
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simplest BFP-typed SPM (Fig. 1(b)). The main challenge is 
how to extract and classify the plasmonic signals from batches 
of experimentally acquired BFP images accurately and 
automatically.  

 
Fig. 1 (a). Prism-coupled SP configuration. (b). Object-coupled Surface 
plasmon microscopy. (c). Requirements on BFP profile identification.  

Currently, there are generally three solutions to identify 
BFP images: i) 1-D identification, which gives relatively rough 
identification results; ii) morphology [11], which is generally 
applicable to the case of low coherence noises and concentricity 
between the absorption profile and the clear aperture; iii) our 
previously proposed Fourier correlation analysis (FCA) [12]. 1-
D identification and morphology do not operate well on 
experimentally acquired images with heavy noise. Our 
previously proposed FCA solved this problem since it 
minimized the influence of random noise and maximized the 
symmetric pattern on the BFP. However, even if the influences 
of coherent noises are ignored, there are still two issues to be 
solved: 1) Previous identification approaches are based on the 
strict pre-assumption that all the acquired BFP images contain 
obvious absorption profiles with pre-known mode of 
polarization. This condition is hard to fulfill in practice, 
especially when loads of BFP images are to be identified. 2) 
The FCA algorithm may become inapplicable when the SP 
profile is in linear mode. It is inevitable to solve the above two 
issues in a complete solution to identification of BFP images. 

This work is to propose a complete identification scheme to 
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solve the two issues in BFP typed SPM above. 
For the first issue, the polarization modes of absorption 

profiles need to be pre-determined, and BFP images with no 
plasmonic signals need to be ruled out. Fundamentally, both of 
these requirements refer to the identification of absorption 
profiles. Present works propose an object detection model to 
solve the issue [13]. Object detection models bring two benefits 
to the proposed identification scheme: firstly, it functions for 
identification, which allows the pre-determination of 
polarization mode and the rule-out of BFP images with no 
plasmonic signals; secondly, it functions for the localization of 
the absorption profile which helps to determine the region of 
interest on BFP images and thus reduce computational cost of 
later procedures.  

Here the selection of specific object detection model for the 
proposed BFP images identification scheme is explained. There 
are two stages of object detection models: conventional 
machine-learning based (utilizing hand-crafted features), and 
deep-learning based (utilizing learned features) [13]. The 
present work selects the latter deep-learning based models for 
two reasons. Firstly, the deep-learning based object detection 
models far surpass conventional models in terms of accuracy 
[13, 14]. Secondly, the deep-learning based Object detection 
models operate without hand-crafted features [13], which suits 
application in BFP typed SPM for its easy configuration. One 
may concern that the training of deep-learning based object 
detection model is slower and more complicated. Actually, this 
is not a problem for its application in BFP typed SPM. Firstly, 
the object detection model only needs to be trained once during 
configuration. For the experiment stage of identification, the 
current object detection models, such as Faster Region-
Convolution Neural Network (Faster R-CNN) [15] and Single 
Shot MultiBox Detector (SSD) [16], are fast enough to achieve 
real-time performance. Secondly, methods such as transfer 
learning can be used to make these deep networks easier to train. 
Therefore, the present work selects deep-learning based models 
for their high accuracy, easy feature extraction, and fast 
identification speed. It is worth noting that the object detection 
model in this work is a trial and mainly aims to verify the 
proposed complete identification scheme. In future works, other 
specific models can also be applied for the identification of BFP 
images. 

For the second issue, a general solution for identifying 
absorption profiles in both linear and radial polarization modes 
is needed. To solve this issue, the algorithm of self-correlation 
is proposed. To the best of the authors' knowledge, it is the first 
time to propose the algorithm of self-correlation in SP 
absorption profiles. Different from the previously utilized 
Fourier correlation analysis (FCA) which works for BFP 
images with radial polarization mode, but only partially works 
for BFP images with linear polarization mode (FCA loses effect 
when the linear absorption profiles are in a certain position), the 
present self-correlation can perfectly work for both of the two 
polarization modes with no specific conditions required. 
Furthermore, the present self-correlation solution provides a 
faster operating speed, which is significantly important for real-
time measurement. A quantitative comparison of FCA and self-

correlation will be given in part ‘V.Discussion’. 
The complete BFP images identification scheme is 

experimentally verified on our home-developed SPM. And the 
performance of the proposed scheme is illustrated through a 
comparison with previous BFP identification approaches. To 
the best of our knowledge, this is the first time to present a 
complete and automatic plasmonic signal extraction and 
classification scheme, which promotes the application and 
implementation of BFP typed SPM significantly. 

II. PRINCIPLE AND METHODOLOGY 
SPM reflects the surface property of plasmonic sample by the 

excitation angle of SPs. In BFP typed SPM, the excitation angle 
of SPs is measured according to the locations of SP profile and 
clear aperture (CA). When the illuminant is in linear or radial 
mode, the SP profile on the reflected BFP appears as a pair of 
crescents or a complete circle [11]. Fig. 2 shows the principle 
of the proposed identification solution. It mainly contains two 
parts: A. classification of BFP images and raw localization of 
profiles, and B. fine detection of SP and CA profiles. The object 
detection model of Faster R-CNN and the algorithm of self-
correlation are responsible for the two part respectively.  

 
Fig. 2.  Principle of the proposed identification solution. Part A: classification 
and raw localization of SP and CA profiles using Faster R-CNN. Part B: B1. 
Center-detection using self-correlation. B2. Radii measurement using intensity 
statistics. B3. Calculation of excitation angle. 

Part A. Classification and Raw Localization 
As mentioned before, there are generally three categories of 

BFP images: image with no SP profile, image with linear SP 
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profile, and image with radial SP profile. Before precise 
location of the SP and CA profiles, the classification and raw 
localization of SP profiles should be performed in advance. In 
this work, the Faster R-CNN is utilized to accomplish this task 
[15]. The principle of Faster R-CNN is shown in Fig. 3. It can 
generally be divided into two stages. In stage 1, Faster R-CNN 
uses a neural network called region proposal network (RPN) to 
roughly localize SP and CA profiles in the form of bounding-
boxes [15]. In stage 2, profiles localized in stage 1 are classified 
into the three categories mentioned above. In particular, the 
images with no SP profile are taken as singularities and ruled 
out in subsequent procedure. In the meanwhile, stage 2 of Faster 
R-CNN also amends the localization result generated in stage 1 
for convenience of subsequent identification. Readers can refer 
to [15] for more technical details. And the reasons for choosing 
Faster R-CNN are given in the discussion in Section IV. 

Localization and classification by Faster R-CNN provides 
great convenience for subsequent identification of SP and CA 
profiles. However, although the approximate radii of SP and 
CA are given by localization of Faster R-CNN, they are not 
accurate enough. There are mainly two reasons for error in radii 
given by Faster R-CNN: First, the structure of Faster R-CNN 
determines that it only generates numerical solutions which are 
approximations of the radii. Second, training of Faster R-CNN 
might introduce error. Faster R-CNN is trained by a manually 
marked training set. The manual marking process totally 
depends on human eyes and induces errors more or less. 
Besides, the training of network might be insufficient to find 
the optimal coefficients due to slight overfitting or underfitting. 
Both the two kinds of errors are inevitable in most of object 
detection networks. Therefore, fine detection based on self-
correlation and intensity statistics is proposed to accurately 
measure the radii of SP and CA. 

 
Fig. 3.  Schematic drawing of Faster R-CNN. Faster R-CNN is a two-stage 
object-detection network that is able to classify and localize target object (SP 
and CA profiles in this work). Stage 1 is to use RPN to localize SP and CA 
profiles roughly. Stage 2 is to rectify localization generated in stage 1 and 
classify the SP profiles. 

Part B. Fine Detection 

The procedure of fine detection of SP and CA profiles is 
shown in Fig. 4. It contains three main steps: (B1) using self-
correlation to identify the center of BFP; (B2) using intensity 
statistics to determine SP and CA profiles and measure their 
radii; (B3) using radii of SP and CA to calculate excitation angle. 
The detailed process is illustrated as follows.  

 
Fig. 4.  Process of fine detection. B1: 2-D convolution is performed between 
the BFP images before and after a rotation of 180º. The profile center is 
determined according to the maximum of the convolution. B2: Determine the 
radii of SP and CA profiles by radial intensity statistics. Intensity statistics curve 
is obtained by calculating average intensity of circles with radius r0 in range [0, 
Rup] (Rup is a radius bigger than the radius of CA profile). SP and CA are 
identified on the intensity statistics curve. B3: Calculate the excitation angle.   

(B1) Self-correlation 
SP and CA profiles are both center symmetric patterns. Self-

correlation which maximizes the symmetric pattern and 
minimizes the random noise on the BFP image [12, 17] is 
utilized to detect the centers of the two profiles. Procedures of 
self-correlation is shown in Fig. 4(B1). First, the original BFP 
image is rotated by 180º. Second, the 2-D convolution between 
the origin BFP image and the rotated image is calculated 
according to the following equation: 

 
1 1

0 0
( , ) ( , ) ( , )

w h

x y
g n m f x y f n x m y

− −

= =

= ⋅ − −∑∑  (1) 

The value of 2-D convolution reflects the level of coincidence 
of the original image with the rotated image. Since both SP and 
CA profiles are center symmetric profiles (SP and CA), the BFP 
has little change before and after the rotation of 180º. And the 
maximum value of 2-D convolution occurs when the center of 
original image coincides with that of the rotated image. 
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Supposing the maximum occurs at the position of (N, M), the 
profile center (xcenter, ycenter) is:  

 

1
2

1
2

center

center

Nx

My

− =
 − =


 (2) 

According to property of convolution in spatial domain, one 
can also calculate the self-correlation by two-dimensional 
Fourier transformation.  

 { })],([)],([),( 1- yxfyxfmng FFF ⋅=  (3) 
Equation (3) is actually a circular convolution, which generates 
multiple solutions and thus requires priori knowledge of BFP 
profile location. For simplification, (1) is used in this work to 
calculate self-correlation. 

(B2) Intensity Statistics 
The schematic diagram of intensity statistics is shown in Fig. 

4(B2). Intensity statistics operates on the center determined by 
self-correlation. First, intensity statistics curve is obtained from 
BFP images. Consider radius r0 in range [0,Rup] (Rup is a radius 
bigger than the radius of CA profile). For a certain r0, average 
intensity of pixels with a distance of r0 from the center is 
calculated. Since the calculation takes a ring of pixels into 
account, effect of random noises is removed. By calculating 
average intensity for r0 in range [0,Rup], an intensity statistics 
curve is obtained. Intensity statistics curve of a schematic BFP 
image is shown in Fig. 4(B2). The horizontal axis of the curve 
is radius and the vertical axis of the curve is intensity. Second, 
the radii of SP and CA profile are identified based on the 
intensity statistics curve. The radius of SP profile r is located at 
the radius with minimum intensity (marked by the red point) 
and the radius of CA profile R is located at the radius with the 
minimum difference (marked by the blue point). 

 (B3) Calculation of excitation angle 
In BFP-typed SPM, the relationship between the excitation 

angle of SPs θsp and the maximum focusing angle θmax is 
characterized by Abbe’s sine condition: 

 max/ sin / sinspr Rθ θ=  (4) 
where r is the radius of SP, R is the radius of CA profile. For a 
given system, the sine of the maximum focusing angle is 
determined according to the numerical aperture (NA) and 
refractive index of immersion medium n of the objective lens: 
 maxsin /NA nθ =   (5) 
By substituting Eq. 5 into Eq. 4, the excitation angle θsp can be 
calculated by: 

 arcsinsp
NA r
n R

θ  = ⋅ 
 

 (6) 

Here the measurement process is accomplished.  

III. CONFIGURATION 

A. Experiment configuration 

A surface plasmon microscopy (SPM) system is configured 
to obtain BFP images. The polarization mode is controlled to 

obtain both the BFP images of both linear and radial modes.  
And the tested samples are prepared to obtain both BFP images 
with and without the absorption profiles. Fig. 5 shows the 
details of experiment configuration. Fig. 5(a) gives the 
schematic diagram of optical arrangement. A laser is utilized as 
illumination. After collimated and expanded by a beam 
expander, the incident beam was then focused on the plasmonic 
sample by an oil-immersion objective lens. And the conjugate 
plane of the reflected BFP is finally imaged by lens 3 and lens 
4 and recorded by the CCD camera. Fig. 5(b) shows the 
practical experiment configuration. A He-Ne laser with a 
wavelength of 632.8nm is utilized as the illumination source. 
An 100X oil-immersion objective lens with a NA of 1.25 
(@Olympus) is utilized to excite the plasmonic signal. 
Considering that the reference tube length of the objective by 
Olympus is 160mm, the corresponding focal length of the 
objective is given by 160/100=1.6mm. As a result, the 
corresponding diameter of the CA is 2fNA, which is 4mm in this 
case. The beam waist of the applied He-Ne laser is 0.8mm and 
a 5X of beam expander is applicable. However, to obtain a more 
uniform illumination, a 10X beam expander is utilized in our 
experiment system. The tested samples are mounted above the 
objective lens (See the blue block in Fig. 5(b)). The detailed 
structure of the multi-layer sample is enlarged on the right side 
of Fig. 5(b) for clear illustration. It utilizes the classical 
sandwiched structure and consists of 1nm Ti, 46nm Au, and 
5/10/15nm MgO. A Charge Coupled Device (CCD) with the 
pixel size of 3.75µm and resolution of 968×1024 is utilized to 
image the BFP which gives the CA and SP signals. To acquired 
BFP images which takes sufficient pixels on the CCD detector, 
the actual BFP of the objective is shrunk by 2.67 times by the 
Lens 3 (f=200mm) and Lens 4 (f=75mm). Fig. 5(c) shows the 
recorded BFP images in three categories: with no SP profile, 
with linear SP profile, and with radial SP profile.  

B. Construction of object detection model 
In this work, the Faster R-CNN is utilized to implement the 

classification and raw localization of BFP images. The 
construction procedure of the Faster R-CNN model is 
demonstrated in Fig. 6(a), which contains three steps: 1) 
creation of dataset, 2) training of Faster R-CNN, and 3) 
evaluation of Faster R-CNN.  

1) Creation of dataset 
BFP images obtained on our home-developed SPM are used 

as the original dataset, based on which a validation set and a 
train set are created. The procedure of dataset creation is shown 
in Step 1 of Fig. 6, which mainly contains three operations.  

Firstly, BFP images are acquired from our home-developed 
BFP-typed SPM. Images with severe noise are discarded. The 
rest of the images with obvious profiles are manually classified 
into three classes: no SP, linear SP, and radial SP.  

Secondly, a validation set is created.  More specifically, the 
validation set consists of 1000 pieces of randomly selected 
images from the three categories of original BFP images, on 
which the bounding boxes of SP and CA profiles are manually 
marked (the squares on BFP images in Fig. 6 Step 1). Each side 
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of the bounding box is tangent to the SP or CA profile and is 
considered to be error free. And half of the length of the 
manually marked bounding boxes are later considered as the 
ground-truth of the radii of SP and CA profiles rtru and Rtru. The 
two parameters are involved in later evaluation of Faster R-
CNN. This validation set is only created for hyper-parameter 
tuning and evaluation of the training Faster R-CNN model. For 
complete evaluation of the proposed identification scheme, 
BFP Images (test set) that are not involved in the training of 
Faster R-CNN will be used. Detailed evaluation of the complete 
identification scheme is in section ‘IV. Experimentation’. 

 
Fig. 5.  Experiment configuration. (a) Schematic diagram of optical 
arrangement. (b) Experimental configuration (He-Ne laser with a wavelength 
of 632.8nm and 1.25NA objective lens) and structure of the multi-layer sample 
(1nm Ti, 46nm Au, and 5/10/15nm MgO). (c) Three categories of recorded BFP 
images. 

Thirdly, a train set is created to train Faster R-CNN. In the 
training process, the Faster R-CNN model might overfit data 
when the train set is too small. In order to attenuate overfitting, 
the original BFP images are augmented. During data 
augmentation, new images are generated from experimentally 
obtained images. Data augmentation in this work involves 
several operations: 1) random cropping, 2) random mirroring, 
3) random rotation, 4) random adjustment of brightness, and 5) 
random adjustment of contrast. Random cropping means the 
generated images will be cropped into smaller images 
containing SP profiles and then reshaped into their original size. 
Random mirroring means the generated images has 33.3% 
chance to be mirrored along the x-axis and 33.3% chance to be 
mirrored along the y-axis. Random rotation means the 

generated image will be randomly rotated and then cropped and 
reshaped into their original size. Random adjustment of 
brightness means the contrast of the generated images will 
change between the value of 32 and 255. Random adjustment 
of contrast means the contrast of the generated images will 
change between the value of 0.5 and 1.5. For the detailed 
realization of these operations, readers can refer to the official 
TensorFlow document of data augmentation functions [18]. 

After augmentation, the images are manually marked with 
bounding boxes, which serves as the ground truth to train the 
localization ability of Faster R-CNN. The number of augmented 
images is related to the amount and quality of the original 
images. Generating a large number of images would increase 
the accuracy of Faster R-CNN, but also result in a long training 
time. The Faster R-CNN exhibits adequate identification 
accuracy on the validation set when the original images are 
augmented to 5000 images. 

 
Fig. 6.  Construction of Faster R-CNN. Step 1: creation of dataset. Step 2: 
training of Faster R-CNN and the output image of well-trained Faster R-CNN. 
Step 3: evaluation of Faster R-CNN. 

2) Training of Faster R-CNN  
Faster R-CNN is made up of many layers and each layer 

have many coefficients. To implement the function of SP and 
CA profiles identification and classification, one needs to train 
the network and update these coefficients. Training all the 
layers of Faster R-CNN is extremely time-consuming. Here we 
apply the transfer learning which is to train the last few layers 
of a pre-trained model [19]. A pre-trained Faster R-CNN model 
[20] from the TensorFlow 1 Detection Model Zoo is utilized in 
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this work. Fig. 6 Step 2 shows a schematic drawing of the Faster 
R-CNN model. The model is based on inception-v2 and is 
trained with the COCO dataset. For details of this model 
(training data, number of layers, etc.) readers can refer to [20, 
21].  The train set created above is applied to this model to train 
its ability to identify SP and CA profiles. Gradient descent with 
momentum is used for optimization. TABLE Ⅰ lists the training 
configurations applied in transfer learning.  

 
3) Evaluation of Faster R-CNN 

The Faster R-CNN is evaluated with the validation set 
(ground-truth). After training, the network is capable of 
automatically generating bounding boxes of SP and CA profiles. 
Half the length of the automatically marked bounding boxes are 
taken as the estimated radii of SP and CA profiles rest and Rest 
respectively. These two parameters are involved in later 
evaluation of Faster R-CNN. 

Two aspects are considered in the evaluation process: i) 
accuracy of classification and localization, ii) accuracy of size 
measurement.  

i) The accuracy of classification and localization is 
evaluated by the terms Average Precision (AP) and mean 
Average Precision (mAP), both of which are numbers range 
from zero to unity. AP is a widely utilized metric in object 
detection, which is positively related to the identification 
accuracy. Identification of each categories of profiles generates 
an AP. Readers can refer to [22] for more details on definition 
and calculation process of AP. As for the term mAP, it reflects 
the overall performance of the object detection model and is 
defined as the arithmetic mean of the APs of CA, linear SP, and 
radial SP profiles. TABLE Ⅱ shows the AP and mAP of Faster 
R-CNN on validation set. Both of them are close to unity, which 
indicates the high accuracy of the trained network.  

ii) The accuracy of size measurement is evaluated by the term 
confidence interval, which denotes the range where the 
measured profile size locates with a certain probability. 
Similarly, the confidence interval is evaluated with the 
validation set to Faster R-CNN. TABLE Ⅲ lists notations and 
the corresponding explanations involved in determination of 
confidence interval. 

Step 3 in Fig. 6 shows the measurement error of SP profiles 
er and CA profiles eR. Both of them can be regarded as normal 
distributions according to the central limit theorem. The mean 
values and standard deviations of the two distributions are 
calculated and the results are listed in TABLE Ⅳ. Since 
standard deviations of error distribution of er and eR equal to 

those of rest and Rest, SP and CA profiles locates in the regions 
of 3est rr σ±  and 3est RR σ± with a probability of 99.74% 
respectively. In the later fine detection, the accurate radii of SP 
and CA profiles are determined in the corresponding regions to 
reduce computational cost.  

 

 

 

IV. EXPERIMENTATION 
To test the complete identification scheme, the proposed 

solution is applied to the identification of SP and CA profiles 
on BFP images captured with our home-developed SPM (test 
set). These captured images are neither in the train set nor the 
validation set. 

Part A. Classification and Raw Localization 
The well-trained Faster R-CNN classifies the BFP images 

and marks bounding boxes of SP and CA profiles automatically. 
BFP images with no SP signal are ruled out in the meanwhile. 
Since the SP and CA profiles only take up a small part of the 
whole image, the Faster R-CNN further crop the whole image 
into a smaller region of interest (RoI), whose length is actually 
20 pixels larger than the length of the bounding box of CA. Fig. 
7(a) shows some identification results and the cropped RoIs of 
the Faster R-CNN. By running later procedures only in the 
cropped RoIs, identification speed is increased with less data to 
be processed. The accuracy of identification is also improved 
because noise in the background is removed. 

TABLE Ⅰ 
TRAINING CONFIGURATIONS 

Configuration Value 
Batch size 4 
Initial Lr 0.001 
Lr after 20000 iterations 0.0001 
Lr after 50000 iterations 0.00001 
Momentum 0.9 
Maximum number of iterations 100000 

Lr is the abbreviation of learning rate.  
 

TABLE Ⅱ 
AP AND MAP OF IDENTIFICATION 

AP of CA 
profile 

AP of linear SP 
profile 

AP of radial SP 
profile mAP 

0.9991 0.9994 0.9996 0.9994 

 
TABLE Ⅲ 
NOTATIONS  

Notations Explanations 
rtru Ground truth of SP radius (manually marked) 
Rtru Ground truth of CA radius (manually marked) 
rest Estimated SP radius by Faster R-CNN 
Rest Estimated CA radius by Faster R-CNN 
er Error of SP radius estimation (rest minus rtru) 
eR Error of CA radius estimation (Rest minus Rtru) 
μr Mean value of er 
μR Mean value of eR 
σr Standard deviation of er 
σR Standard deviation of eR 

Radius equals to half the length of bounding box. rtru and Rtru are calculated 
from manually marked bounding boxes (Step 1 of Fig. 6). rest and Rest are 
calculated from bounding boxes generated by Faster R-CNN (Step 2 of Fig. 6). 
er equals to rest minus rtru. eR equals to Rest minus Rtru.  
 

TABLE Ⅳ 
MEAN VALUE AND STANDARD DEVIATION OF SPS AND CAS 

 Value 

μr 9.9×10-5 
σr 2.5×10-3 
μR 4.2×10-4 
σR 2.3×10-3 
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Part B. Fine detection 
Part B fine identification operates within the RoI provided by 

the faster R-CNN. The experimental procedure is shown in Fig. 
7. It contains three steps: (B1) self-correlation for center 
identification, (B2) Intensity statistics for radii determination, 
and (B3) calculation of excitation angle of SPs. Details of the 
three steps will be discussed in the following. 

1) Self-correlation for center identification  
According to the principle in Section II, the self-correlation 

enables to identify the center of axial symmetric shape or center 
symmetric shape in one step. This principle assumes that the 
pattern has only one center of symmetry, which requires a well-
manufactured and well-assembled system configuration. In 
practical experiment, one needs to exclude the cases where the 
CA and SP profiles have different centers.  

In this work, the centers of CA and SP profiles are identified 
respectively to see whether they are identical, as shown in Fig. 
7(B1). To identify centers with self-correlation, the CA and SP 
profiles on the BFP image should be separated first. The CA 
and SP profiles are separated by MET (minimum error 
thresholding) and RMET (radius-based minimum error 
thresholding) respectively [11, 23]. After that, the separated 
profiles are binarized, which is an inevitable requirement of 
self-correlation. 2-D convolution is conducted between the 
binarized image and its 180° rotation. The centers of CA and 
SP profile are determined according to the convolution results. 
Based on the principle from section II, centers are located at the 
maximum points of convoluted image. For most of the BFP 
images captured by our SPM, the two identified centers are 
nearly identical. One can take either of the two as the 
determined center of the BFP image. Several extreme cases 
where the centers of CA and SP profiles deviate from each other 
for more than 2 pixels are discarded to avoid severe 
measurement errors. 

2) Intensity statistics for radii determination 
In order to determine the radii of CA and SP profiles, the 

intensity statistics of the BFP image is calculated. Intensity 
statistics has two elements: center of intensity statistics, and 
interval of intensity statistics.  

The center of intensity statistics is identical with the image 
center determined by self-correlation. The interval of intensity 
statistics is determined by the confidence interval of Faster R-
CNN. To identify SP and CA profiles, the intensity statistics is 
conducted in the range of 3est rr σ±  (red region in Fig. 7(B2)) 
and 3est RR σ±  (blue region in Fig. 7(B2)) respectively. 
Intensity statistics curve is formed by evaluating radii in these 
ranges. Radius of SP profile is located at the radius with 
minimum intensity. And radius of CA profile is located at the 
radius with minimum difference. 

3) Excitation angle 

According to (5), excitation angle (EA) of SPs is determined 
by using the radii of SP and CA profiles. The measured 
excitation angles of different plasmonic samples are listed in 
TABLE Ⅴ, which show a good consistence with the theoretical 

values calculated by Fresnel equations [24].  

 
Fig. 7.  Identification of SP and CA profiles has two parts. (a). Classification 
and Raw localization: The original outputs of Faster R-CNN in the experiment 
shows that Faster R-CNN achieves classification and localization. (b). Fine 
detection: B1: Separate SP and CA profiles and identify their respective centers. 
B2: Measure radii of SP and CA profiles on the intensity statistics curve. B3: 
Calculate excitation angle. The linear SP profile is taken as the example. 
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V. DISCUSSIONS 
In this section, the performances and advantages of the Faster 

R-CNN and self-correlation are discussed. More specifically, a 
quantitative comparison in procedure, accuracy, and speed is 
made between the Faster R-CNN and SSD, another object 
detection model. The advantages of self-correlation in 
universality and speed when compared with our previously 
proposed FCA is also illustrated. 

A.  Faster R-CNN versus SSD  

 
Fig. 8. (a) structure of Faster R-CNN and SSD. (a). Accuracy of SSD and Faster 
R-CNN in BFP-typed SPM (b). Time-cost of SSD and Faster R-CNN on an 
Intel(R) Core(TM) i5-6600 CPU. 

Fig. 8 demonstrates the comparison between Faster R-CNN 
and SSD in principle (Fig. 8(a)), accuracy (Fig. 8(b)), and speed 
(Fig. 8(c)) respectively. As shown in Fig. 8(a), Faster R-CNN 
is a typical two-stage identification network. In stage 1, Faster 
R-CNN localizes the target object roughly by using RPN [15] 
which makes Faster R-CNN have better performance in speed 

than many other two-stage identification networks, such as R-
CNN [14] and Fast R-CNN [25]. In stage 2, the localization 
generated by RPN is rectified, and the target object is classified. 
By contrast, SSD [16] is a typical one-stage identification 
network. SSD extracts multiple feature maps of input image to 
classify and locate objects at the same time on all feature maps 
[16]. Final output is provided by non-maximum regression is 
SSD.  

For a quantitative comparison between Faster R-CNN and 
SSD, the previous transfer learning approach (TABLE Ⅰ) is 
utilized to transfer learn a pretrained SSD model [26] from 
TensorFlow 1 Detection Model Zoo. The model is also 
pretrained with the COCO dataset. For details of this model 
(training data, number of layers, etc.) readers can refer to [21, 
26]. 

Fig. 8(b) shows the comparison in accuracy of the two 
networks. The term AP is utilized as the criterion. One can see 
that the Faster R-CNN is always more accurate than SSD. And 
this advantage of Faster R-CNN become more obvious when 
the identified SP profiles are in radial mode. Fig. 8(c) shows the 
time-cost of the two networks for identification of images 
obtained from the home-developed SPM. The identification is 
operated on Intel(R) Core(TM) i5-6600 CPU. It shows that the 
SSD is faster than Faster R-CNN.  

The comparison results of the two networks are listed in 
TABLE Ⅵ. Faster R-CNN operates slower but with higher 
accuracy. This is because the second stage of Faster R-CNN 
offers correction of localization provided by the first stage, 
making identification more accurate but slower. Since the 
identification accuracy is much more essential in micro-Nano 
detection, Faster R-CNN is chosen in the experiment. 

 
B. Self-correlation versus FCA 

Fig. 9 shows that the proposed self-correlation method has 
two advantage over the previously proposed FCA.  

First, FCA may become ineffective in center identification of 
linear SP profile. The case is shown in Fig. 9(a1). FCA 
convolutes original profile with horizontally/vertically flipped 
profile and use maximum of correlation coefficient to 
determine the horizontal/vertical location of the center of SP 
profile [12]. However, when the centers of the original profile 
and the flipped profile coincide, correlation-coefficient is 
always zero. In this case, one cannot figure out the location of 
the profile center. By contrast, self-correlation is applicable to 
center identification of all kinds of profiles including CA profile, 
linear SP profile, and radial SP profile. When the SP profile is 
in linear mode, self-convolution is still able to find the 
maximum of the correlation-coefficient (a2). 

Second, self-correlation determines center faster than FCA. 
In FCA, two convolution operations are required to determine 
the horizontal and vertical coordinates of the center respectively. 

TABLE Ⅴ 
RESULTS OF EXCITATION ANGLE MEASUREMENT 

 
5nm 
MgO 

15nm 
MgO 

20nm 
MgO 

CA radius/Pixels 267 267 267 
SP radius/Pixels 228 237 244 
Measured excitation 
angle/degree 

44.7 47.0 48.8 

Theoretical excitation 
angle/degree 

44.4 46.5 48.1 

theoretical excitation angles are calculated by Fresnel equations. 

TABLE Ⅵ 
PERFORMANCE OF SSD AND FASTER R-CNN 

 SSD Faster R-CNN 
Accuracy lower Higher 
Time-cost faster slower 
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By contrast, self-correlation only utilizes one convolution 
operation to determine the center location. Fig. 9. (b) is a 
comparison of FCA and self-correlation in time-cost when 
applied to separated and binarized profiles. Both of them 
operate on Intel(R) Core (TM) i5-6600 CPU. The result shows 
an obvious advantage of self-correlation in calculation speed. 
When the mode of plasmonic signal is determined, the self-
correlation procedure can operate independently, which means 
an extremely fast identification process. 

 

VI. CONCLUSION 
In this work, a complete and feasible solution to identify BFP 

absorption profile was proposed and applied to excitation angle 
measurement. Both principle and experimental verification of 
the proposed solution were provided. Furthermore, the Faster 
R-CNN was shown to be more accurate than SSD despite 
relatively slower calculation speed. Self-correlation was also 
demonstrated to be more universal and faster than the previous 
FCA. To the best knowledge of the authors, this is the first time 
to present such a complete, automatic, and accurate solution for 
signal extraction of BFP typed SPM. This work greatly 
promotes the application and instrumentation of BFP typed 
SPM. It is worth noting that the object detection model in this 
work is a trial and mainly aims to verify the proposed complete 
identification scheme. In future works, other specific models 
can also be applied for the identification of BFP images. 

we have uploaded all the data and codes to the submission 
system for the readers to reproduce the algorithm. The complete 
identification scheme in this work will be available at 
http://ieeexplore.ieee.org, which includes test images and 
Python executables (206MB) 
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Fig. 9.  (a1). How FCA cannot be used to identify linear SP placed in a certain 
location. (a2). Application of self-correlation to identify the linear SP which 
FCA cannot identify. (b). Average time-cost of FCA and Self-correlation. 
Measurement of time-cost is conducted with an Intel(R) Core(TM) i5-6600 
CPU. 
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