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Abstract

The application of message-passing Graph Neural Networks
has been a breakthrough for important network science
problems. However, the competitive performance often
relies on using handcrafted structural features as inputs,
which increases computational cost and introduces bias into
the otherwise purely data-driven network representations.
Here, we eliminate the need for handcrafted features by
introducing an attention mechanism and utilizing message-
iteration profiles, in addition to an effective algorithmic
approach to generate a structurally diverse training set of
small synthetic networks. Thereby, we build an expressive
message-passing framework and use it to efficiently solve
the NP-hard problem of Network Dismantling, virtually
equivalent to vital node identification, with significant real-
world applications. Trained solely on diversified synthetic
networks, our proposed model—MIND: Message Iteration
Network Dismantler—generalizes to large, unseen real
networks with millions of nodes, outperforming state-of-
the-art network dismantling methods. Increased efficiency
and generalizability of the proposed model can be leveraged
beyond dismantling in a range of complex network problems.

Introduction
Network dismantling is the problem of finding the sequence
of node removals that most rapidly fragments a network
into isolated components (Braunstein et al. 2016; Ren
et al. 2019). Finding dismantling solutions is equivalent
to the identification of vital components of the network
system, and has profound real-world applications, such
as breaking criminal organizations by arresting the key
members (Ribeiro et al. 2018), stopping epidemics with
targeted vaccinations (Kitsak et al. 2010; Cohen, Havlin, and
Ben-Avraham 2003), ensuring the resilience of healthcare
systems via the key providers (Lo Sardo et al. 2019), and
preventing wildfires by securing critical locations (Demange
et al. 2025). Figure 1 visualizes network dismantling of a
real-world social network (Guo, Zhang, and Yorke-Smith
2016) in action, where strategically removing a mere 7% of
nodes effectively breaks it into small components.

Despite the practical significance, only approximate
solutions can be sought for network dismantling, due
to the NP-hard nature of the problem (Braunstein
et al. 2016). Yet, the possibility of reaching a universal
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Figure 1: (a) The original social network from the FilmTrust
project (Guo, Zhang, and Yorke-Smith 2016) with 610
nodes. (b) The dismantled network by MIND, down to a
10% relative Largest Connected Component (LCC) size. (c)
Relative LCC size versus the fraction of nodes removed,
comparing MIND with two state-of-the-art methods. (The
5 largest components are color-coded in network plots.)

perception of structural roles, and the challenge of
planning along the extreme breadth and depth of the
search, have motivated the decades-long quest for better
dismantling solutions. The early solutions use node
centrality metrics as heuristics (Freeman 1977; Wandelt
et al. 2018), with advancements later made by theoretical
solutions to more tractable proxy problems, including
optimal percolation (Morone and Makse 2015), graph
decycling (Braunstein et al. 2016), and minimum cut (Ren
et al. 2019). Recent methods use Graph Neural Networks
(GNNs) to learn vector representations of nodes through
iterative message-passing, which scales linearly with the
number of nodes and edges and is parallelizable on
GPUs (Veličković et al. 2018; Hamilton, Ying, and Leskovec
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2017). The well-performing existing methods (Fan et al.
2020; Grassia, De Domenico, and Mangioni 2021) rely on
handcrafted inputs to aid the inference of nodes’ importance.

We argue that using handcrafted input features i) imposes
significant computational overhead, especially for large-
scale networks, and ii) biases the learned dismantling
strategy toward the predefined features whose effectiveness
varies across network families. To address these limitations,
we propose Message Iteration Network Dismantler
(MIND)—a model solely based on data-driven geometric
learning without manually engineered features. While it
is well-established that initializing GNNs with structural
heuristics improves the performance (Cui et al. 2022),
MIND achieves competitive performance through pure
message-passing. Specifically, MIND i) employs an
expressive attention mechanism to replace the non-
injective softmax normalization in existing Graph Attention
Networks (GATs), and ii) leverages node embeddings
from all message-passing iterations to capture crucial
structural information. We demonstrate that the design
of MIND enables the estimation of complex structural
roles, such as those given by combinatorial centrality and
spectral embedding, which are proven essential for network
dismantling (Wandelt et al. 2018), and empirically show
that MIND can discover new, data-driven node features that
outperform known dismantling heuristics.

MIND learns to identify critical nodes and substructures
with Reinforcement Learning (RL) that is trained by
dismantling small synthetic networks. We introduce a
training pipeline utilizing degree-preserving edge rewiring
to systematically synthesize structurally diverse networks
with varying levels of assortativity and modularity.
Interactions with these diversified networks significantly
enhance the policy’s ability to generalize to complex real-
world networks. Our proposed trained policy scales well
to networks with well over 1 million nodes, achieving
state-of-the-art dismantling performance using only the raw
incidence information, without any handcrafted input. The
key contribution is the introduction of a pure geometric
learning framework that can decipher the complex structural
roles of network entities with surprising generalizability,
resulting in the best performance to date on one of the most
challenging network problems.

Related Works
Reinforcement Learning RL solves combinatorial
optimization problems by learning a policy that maximizes
the expected cumulative reward of action sequences in the
given state space (Sutton, Barto et al. 1998; Konda and
Tsitsiklis 1999). This approach enables the optimization
of non-differentiable objectives via sequential decision-
making; e.g., reducing network connectivity by iterative
node removals, which is infeasible through exhaustive
search, and difficult for heuristic methods that do not
generalize to the infinite possible network configurations.
This necessitates learning from experience, where RL,
especially with recent advances in Deep RL (Mnih et al.
2013; Khalil et al. 2017; Haarnoja et al. 2018), is a
particularly effective solution.

Graph Neural Networks GNNs learn representations
of network structures through node embeddings that are
iteratively refined by aggregating the messages in each
node’s neighborhood (Kipf and Welling 2016; Hamilton,
Ying, and Leskovec 2017; Brody, Alon, and Yahav 2022).
A shared, learnable function transforms these messages,
enabling generalization to networks of arbitrary sizes.
Theoretically, certain GNN architectures can distinguish
almost all non-isomorphic networks even without initial
node features, provided the learned function is a universal
approximator (Kipf and Welling 2016; Dai, Dai, and Song
2016; Xu et al. 2019; Morris et al. 2019). However, in
practice, initializing node embeddings with constant or
random values often degrades the performance compared
to using handcrafted features (Cui et al. 2022). The
latter facilitates convergence (Oono and Suzuki 2020),
but introduces bias to the learned embeddings (see the
discussion on Fig. 4), as nodes with similar initial features
are placed close to each other in the embedding space.

Network Dismantling via Machine Learning GNN-
based embedding has significantly advanced network
dismantling. Fan et al. (2020) use RL to train GNNs
from experience in dismantling small random networks, but
incorporate handcrafted global structural features into the
GNN embeddings. Grassia, De Domenico, and Mangioni
(2021) train their model on brute-force optimal dismantling
sequences found for small networks, yet rely on a set of input
node features (degree, neighborhood degree statistics, k-
coreness, and clustering coefficient) to be calculated before
being applied to dismantle a network. Khalil et al. (2017)
show that without manually engineered node features,
GNNs can solve other network combinatorial optimization
problems, e.g., minimum vertex cover, max-cut, and the
traveling-salesperson problem, yet, to the best of our
knowledge, no existing method has achieved competitive
dismantling performance in this setting.

Network Dismantling as an RL Problem
Let G denote the universe of all possible networks and
PG be the distribution from which a network (or graph)
is drawn: G0 = (V0, E0) ∼ PG , where V0 is the set of
nodes and E0 is the set of edges between the nodes. At each
step t = 0, · · · , |V0| − 1, the network dismantling policy
π(vi|Gt) observes Gt = (Vt, Et) and outputs a distribution
over vi ∈ Vt, from which a node is drawn vt ∼ π(vi|Gt)
and removed from Gt (along with its incident edges), which
we formulate as Gt+1 = Gt \ {vt}. With slight abuse
of notation, we simplify vt ∼ π(vi|Gt) as vt = π(Gt).
The standard objective for the network dismantling problem
is the area under the curve (AUC) of the relative size of
the network’s Largest Connected Component (LCC) to be
minimized over the sequence of node removals, which we
use to formulate policy optimization:

min
π

E

|V0|−1∑
t=0

LCC(G0 \ {v0, · · · , vt})
|V0|

 , (1)



where LCC(.) returns the relative size of the LCC. The
optimization problem in (1) can be rewritten as the sum of
rewards:

max
π

E

|V0|−1∑
t=0

rt

 , rt = −
LCC(Gt \ {vt})

|V0|
. (2)

Since Gt+1 depends only on the current Gt and vt, the
problem in (2) forms a Markov Decision Process (MDP)
that can be solved using RL in a data-driven manner. We
also follow the standard definition of the state-action value
function:

Q(Gt, vi) = rt + E

|V0|−1∑
k=t+1

rk

 , (3)

where Q(Gt, vi) denotes the expected cumulative return
(i.e., expected future AUC) starting with the removal of node
vi in network Gt and thereafter following the policy π.

Specifically, we solve (2) using an Actor-Critic RL
algorithm, where the actor corresponds to the dismantling
policy π(vi|Gt) and the critic to the state-action value
function Q(Gt, vi). Each training iteration consists of two
sub-processes: value estimation and policy improvement.
The Actor-Critic framework features experience replay,
which increases sample efficiency; each training iteration is
performed on a randomly sampled batch of historical state
transitions B ⊆ {(G0, v0, r0, G1), . . . , (Gt, vt, rt, Gt+1)}.
In value estimation, MIND estimates Q(Gt, vi) with the
Bellman equation:

Q(Gt, vt) ≈ EB [rt +Q(Gt+1, π(Gt+1))] . (4)

Then, the policy improvement updates policy π by solving:

π̂ = argmax
π

EGt∈B [Q(Gt, π(Gt))] . (5)

The batch B is sampled from trajectories generated on
networks from the same distribution PG and by the same
policy π(vi|Gt) (as in (2)), so, the maximization in Eq. (5)
corresponds to a Monte Carlo approximation of the original
objective in (2).

Methodology
To learn the representation of complex networks that is
generalizable across all networks in G, MIND employs
a GNN-based RL framework, where both the state-action
value function Q(Gt, vi) and the policy π(vi|Gt) are
parameterized by encoder-decoder neural networks. The
encoder GNNs take the adjacency representation of Gt as
input and extract node embeddings zi, which capture the
structural role of each node vi ∈ Vt. The decoders then
map each zi to a scalar score, i.e., the state-action value
of removing vi in Q(Gt, vi) decoder, and the probability
of selecting vi for removal in π(vi|Gt) decoder. Since
the encoders use a permutation-invariant GNN and the
decoders are shared across all nodes, this architecture
naturally handles networks of varying sizes and calculations
of Q(Gt, vi) and π(vi|Gt) for any (Gt, vi) pair.

GNN Encoder
To learn network representations not biased by the selection
of handcrafted node features, the GNN encoder of MIND
initializes each node vi ∈ Vt with a set of H all-ones
vectors, {ehi = 1F |h = 1, 2, . . . ,H}, each ehi serving
as a head, allowing for simultaneous encoding of diverse
structural information. We propose a GNN encoder that
incorporates two mechanisms (detailed in this section) that
enable effective network representation learning with simple
all-ones initialization.

All-to-One Attention Mechanism At each message-
passing iteration, the embedding vector ehi of node vi is
updated using the following rule:

êhi = αh
i W

h
σ e

h
i +

∑
j∈N (i)

αh
i,jW

h
ν e

h
j , (6)

where Wh
σ ,W

h
ν ∈ RF×F are learnable weight matrices.

We propose the attention mechanism (MIND-AM) below to
calculate the coefficients αh

i and αh
i,j :

αh
i = MLPh

σ

([
H

∥
h=1

Wh
σ e

h
i

])
, (MIND-AM)

αh
i,j = MLPh

ν

([
H

∥
h=1

Wh
σ e

h
i

]
+

[
H

∥
h=1

Wh
ν e

h
j

])
,

where
[
∥Hh=1 x

h
]

is a vector concatenation as [x1∥ · · · ∥xH ],

and MLPh
σ,MLPh

ν : RHF → (0, 1) are head-specific neural
networks with sigmoid-squashed outputs. Equation (6) uses
attention coefficients αh to selectively aggregate messages
from different neighbors, similar to the state-of-the-art
GATs (Veličković et al. 2018; Brody, Alon, and Yahav
2022). However, GATs do not learn when ehi = 1F for
all i and h, since softmax-normalization of αh keeps node
embeddings identical over message-passing iterations (as
demonstrated in Fig. 5).

The idea behind MIND-AM is to employ an attention
mechanism that i) eliminates the need for softmax
normalization of αh and thus preserves injectivity over the
multiset {ehj : j ∈ N (i)}, and ii) controls the explosion
of |ehi | without explicit normalization. Equations (MIND-
AM) achieve the above by computing each head’s attention
coefficient αh using features from all heads. Thereby, our
encoder automatically learns to leverage node information
(e.g., local degree-like features) captured in other heads to
normalize messages and prevent feature explosion.

Message Iteration Profiles Let e
(k)
i denote the

embedding vector of node vi after the k-th message-passing
iterations, calculated by concatenating the embeddings
across all heads: e

(k)
i =

[
∥Hh=1 e

h
i

]
, at layer k. MIND

computes the Message Profile (MIND-MP) as the final
node embedding zi, i.e., the profile of embeddings over all
message-passing iterations:

zi = MLPζ

([
K

∥
k=1

e
(k)
i

])
, (MIND-MP)



where MLPh
ζ is a shared neural network between all nodes.

The first motivation for MIND-MP is the well-known
issue of over-smoothing in node embeddings caused by
iterative message-passing (Li, Han, and Wu 2018; Oono and
Suzuki 2020). In Appendix A, Theorem 1, we show that the
embeddings e

(k)
i for all nodes vi ∈ Vt tend to converge to

the principal eigenvector of the message-passing operator as
k increases. MIND-MP retains local structural information
from early iterations, thereby preserving the diversity of
embeddings.

The second motivation for MIND-MP is to extract crucial
structural information that can only be obtained by jointly
considering all message-passing iterations. Although e

(k)
i

converges as k increases, nodes converge at different rates,
depending on their centrality (Hage and Harary 1995), as
more central nodes begin aggregating information from
the entire network earlier. Further theoretical insights into
MIND’s expressiveness are provided in Appendix B, where
we show that by learning the message-passing operator
in Lemma 1, MIND can approximate the Fiedler vector,
a widely-used spectral heuristic in network dismantling
literature (Wandelt et al. 2018; Grassia, De Domenico, and
Mangioni 2021).

NN Decoder
In addition to the node embeddings zi, which encode the
structural roles of individual nodes, we introduce a synthetic
omni-node vo to Gt. Each node vi ∈ Vt is connected to vo
via a directed edge, enabling one-way message-passing from
all nodes to vo. This design allows the resulting embedding
zo from the GNN Encoder to aggregate information from
the entire network and represent the global state of Gt. Both
the omni-node and individual node embeddings are passed
to the decoders to enable state-aware decision-making.
In particular, as formulated below, the Q decoder learns
to estimate the remaining dismantling AUC, while the π
decoder predicts the relative importance of each node for
the next removal step:

Q(Gt, vi) = MLPθ ([zi∥zo]) ,
π(vi|Gt) = MLPϕ ([zi∥zo]) .

(7)

By leveraging both local information (through zi) and global
information (through zo), the learned network dismantling
policy can perform long-term planning and adapt based on
the current state of dismantling. The neural networks MLPθ

and MLPϕ are shared across all nodes, enabling MIND to
generalize across networks of varying sizes.

Systematically Diversified Training Networks
Our goal is to train a universal dismantler that generalizes
across all G0 ∈ G. So, it is essential to train on diverse
network configurations. For this purpose, the common
practice is to generate networks of different sizes (and
densities) using random graph models. The significance
of the famous graph models, to an extent however, does
not reflect their representativeness of the real (or possible)
networks (and arguably has more to do with tractable
mathematical properties). Here, we propose a systematic

procedure to generate random training networks that better
reflect the structural diversity of real-world networks.
In short, the proposed procedure takes small (100-200
nodes) random networks of different degree distributions
and introduces different levels of modularity and degree-
assortativity by randomizing the configurations (keeping the
degree sequences fixed); this also attenuates the geometrical
properties inherited from the graph generation models.

We first synthesize 10,000 random networks using Linear
Preferential Attachment (LPA) (Newman 2018), Copying
Model (Kumar et al. 2000), and Erdos-Renyi (ER) (Erdos
and Renyi 1959) models. To enhance the structural diversity,
we apply degree-preserving edge rewirings to induce
different types of node mixings. Specifically, we perform
random edge rewirings that either favor or discourage
connections between nodes with similar labels, either by
degree to create varying levels of degree assortativity
(assortative, uncorrelated, disassortative), or randomly to
induce varying levels of modularity (modular, random, and
multipartite). See Appendix C for further details on the
generation process.

Entropy-Regularized Policy Learning
To train MIND for solving (2), we perform multiple
dismantling episodes, each beginning with a network
randomly sampled from the training set. The specific RL
algorithm (detailed in Appendix D, Algorithm 1) is based
on Soft Actor-Critic (SAC) (Haarnoja et al. 2018), chosen
for its high sample efficiency and its ability to encourage
effective exploration via entropy regularization. However,
unlike the original SAC, which handles continuous action
spaces via Monte Carlo sampling, the action space Vt here is
discrete, allowing MIND to directly compute the expectation
of the Q-value under the current policy for each Gt as:

Eπ [Q(Gt, vt)] =
∑
vi∈Vt

π(vi|Gt)Q(Gt, vi). (8)

Experiments
We compare the performance of MIND with a
comprehensive set of baseline methods on both real-
world and synthetic networks (Braunstein et al. 2016;
Clusella et al. 2016; Ren et al. 2019; Fan et al. 2020;
Grassia, De Domenico, and Mangioni 2021). The baselines
represent both the classic methods and the state-of-the-art,
identified in the recent review by Artime et al. (2024), and
categorized as i) Centrality Heuristics: Adaptive Degree
(AD), Betweenness Centrality (BC), and PageRank (PR);
ii) Approximate theory methods: Min-Sum (MS), Explosive
Immunization (EI), and Generalized Network Dismantling
(GND); and iii) Machine Learning methods: FINDER and
GDM. MIND has the lowest computational complexity
among machine learning-based dismantling methods (see
Table 1), as a result of not requiring the computation of
handcrafted node features for embedding initialization.
Compared to the approximated theory baselines, MIND is
also the most computationally efficient, except for the EI
method only on dense networks, where |E| asymptotically
grows faster than |V | log |V |. All baselines are implemented



MIND GDM FINDER AD GND EI PR MS BC

ov
er

al
l

a
100.0 105.6 106.9 110.4 118.6 121.7 125.6 129.5 137.8

100 110 120 130 140 150 160

arenas-met

dimacs10-c

foodweb-bd

foodweb-bw

maayan-Ste

maayan-fig

maayan-foo

maayan-vid

moreno_pro

MIND GDM FINDER AD GND PR EI BC MS

ov
er

al
l

b
100.0 104.7 107.1 110.3 112.7 116.8 122.2 129.6 132.7

100 120 140 160 180

  advogato
    douban
ego-twitte
     hyves
librec-cia
librec-fil

loc-bright
loc-gowall

munmun_dig
munmun_twi

opsahl-ucs
pajek-erdo
petster-ha
slashdot-t
slashdot-z
soc-Epinio

MIND GDM EI FINDER GND AD PR MS BC

ov
er

al
l

c

100.0 105.0 109.0 118.0 118.0 122.8 133.7 138.3
193.3

50 100 150 200 250 300 350 400
relative AUC

 cit-HepPh
  citeseer

com-amazon
  com-dblp

 dblp-cite
dimacs10-p
  econ-wm1

     linux
p2p-Gnutel
p2p-Gnutel
subelj_jdk
subelj_jun

   web-EPA
web-Stanfo

EI GND MIND GDM FINDER AD PR MS BC

ov
er

al
l

d

67.4 80.3 100.0 100.8
132.4 141.8 149.4 180.5

225.8

0 200 400 600 800
relative AUC

eu-powergr

gridkit-eu

gridkit-no

internet-t

london_tra

opsahl-ope

roads-cali

roads-sanf

tech-RL-ca

Figure 2: Dismantling performance of MIND and the baseline methods on (a) biological, (b) social, (c) information, and (d)
technological networks. The scatter plots display the AUC of dismantling for all methods normalized relative to that of MIND at
100 (AUC above 100 denotes worse performance than MIND). The bar plots summarize the overall performance of the methods
in each network domain, with shorter bars corresponding to lower average AUC and thus stronger dismantling performance.

following their respective references (readers may refer to
the summary in Table 1 of (Artime et al. 2024)). MIND is
trained over 8 million dismantling episodes, each initialized
with a random selection from the training set of 10,000
small synthetic networks. The detailed training setup of
MIND is provided in Appendix D.

Result on Real Networks
We evaluate MIND on real-world networks across four
domains, namely, biological, social, information, and
technological—covering a wide range of properties and
sizes from 128 to 1.4 million nodes (summarized in
Appendix E, Table 4). Figure 2 reports the AUC of the
dismantling curve for all methods, normalized relative to
MIND for each network; the bar plots summarize the overall
performances in each domain. The detailed relative AUC
values are provided in Appendix F.

The top three methods, ranked by overall performance
across all networks, are MIND (100.0), GDM (104.13), and
EI (107.96). The results demonstrate that although other

Method Complexity
MS O(|V | log |V |) +O(|E|)
EI O(|V | log |V |)
GND O(|V | log2+ϵ |V |)
FINDER O(|V | log |V |+ |E|)
GDM O(|V |⟨d2⟩+ |E|)
MIND O(|V |+ |E|)

Table 1: Computational complexity of methods assuming
adjacency list representation of G = (V,E). (⟨d2⟩ is the
second moment of degree.)

machine learning baselines take advantage of handcrafted
inputs, MIND consistently achieves stronger performance
across all domains. This highlights that handcrafted
initial embeddings, despite boosting the GNN training, do
not inherently yield strong dismantling performance. In
contrast, MIND, empowered by our proposed MIND-AM
and MIND-MP mechanisms (see the GNN Encoder section),
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Figure 3: The AUC of the dismantling curve for synthetic
networks (ER, CM, and SBM) of varying sizes. The scatter
plot compares the dismantling performance of all methods
normalized for each network relative to MIND, and the bar
plot summarizes the overall performance. The AUCs are
averaged over 10 realizations.

is able to identify structurally vital nodes purely from
adjacency representation, resulting in an effective network
dismantling policy. In technological networks (Fig. 2d),
MIND slightly underperforms EI and GND, but still
outperforms all other methods, including machine learning
baselines (GDM and FINDER). This can be attributed to
the limited reach of GNN message-passing in technological
networks with very large diameters (e.g., over 100 for
gridkit-eupowergrid and gridkit-north america).

Result on Synthetic Networks
We evaluate MIND on synthetic networks generated by
the widely-adopted protocols in prior studies: (i) ER with
average degree ⟨d⟩ = 4, (ii) Configuration Model with
⟨d⟩ = 4 and degree distribution P (d) ∼ d−2.5, and (iii)
Stochastic Block Model with group size 100, pintra = 0.1,
and pinter = 5/|V |. From each model, we generate networks
of size 1 k, 10 k, and 100 k, and evaluate the average AUC
over 10 realizations. Figure 3 shows scatter plots of the AUC
of dismantling for all methods, normalized relative to MIND
for each network type, and bar plots comparing the overall
performances. Note the testing networks in Fig. 3 differ from
those that MIND is trained on, in both sizes and methods of
generation.

From the results, we observe that MIND significantly
outperforms the baselines, except for Stochastic Block
Model with 1 k nodes, where the inherent community
structures enable the decycling-based method (MS) to
achieve a comparable performance to MIND. Notably,
although GDM uses the node degree as an input feature,
the learned message-passing functions extract structural
information that ultimately leads to worse performance than
the simple AD across all synthetic networks. Since GDM
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Figure 4: (a) Relative LCC size during the dismantling
of an ER network with 1 k nodes. We compare the node
dismantling sequence derived (by PCA) from a set of
heuristics with those generated by (b) GDM and (c) MIND;
Spearman rank correlation coefficient R and the regression
(solid line) with confidence interval (shaded area) are shown
on the plots. The heuristic removal sequence is derived from
the principal component of GDM’s input node features.

is trained on the same synthetic networks, this suggests
that it overfits to the specific network training set and
loses generalizability to similar structures. This highlights
the better generalizability of the RL-based (FINDER and
MIND) dismantling policies compared to the supervised
learning approach (GDM).

For an ER network where nodes are structurally similar,
the simple AD method performs considerably better than
GDM (Fig.4a). Following this observation, we investigate
whether GDM’s degraded performance may be due to
an inherent bias towards its handcrafted input features:
degree, neighborhood degree statistics, k-coreness, and
clustering coefficient. Let X ∈ RN×4 be the corresponding
feature matrix for the ER network. We combine the
input features by projecting X onto the first principle
eigenvector of 1

NX⊤X , and order the nodes accordingly to
obtain a heuristic dismantling sequence. Figure 4b shows
significant correlation between the dismantling sequence
of GDM and that of its input features. In contrast,
MIND dismantling has weak to no correlation with the
heuristic dismantling sequence (Fig. 4c). This corroborates
that MIND gains performance by learning the underlying
structural importance beyond the standard node heuristics.

Ablation Studies
GNN Design The effectiveness of the proposed MIND-
AM and MIND-MP is empirically verified via ablation
experiments, where we remove each design component and
observe the changes in validation performance (the AUC
of dismantling) during training. To calculate the validation
AUC, we conduct small-scale tests and take the average
performance over 20 synthetic networks generated by LPA,
ER, and Watts-Strogatz (Watts and Strogatz 1998) models
every 10,000 training steps. We also include the original
GATv2 and GCN in the comparison, using them as the
message-passing operators while keeping the rest of the
MIND framework unchanged (e.g., employing message-
iteration profiles instead of the final embedding). The results
are shown in Fig. 5, as the mean (solid line) and standard
deviation (shaded area) of validation AUC during training
over 5 independent runs.
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Figure 5: The validation AUC during training (mean±std).
MIND is compared against: i) GATv2; ii) GCN; iii) MIND
without MIND-AM (the all-to-one attention mechanism);
and iv) MIND without MIND-MP (the message-profile over
iterations).

The results demonstrate that MIND, even after removing
the architectural designs proposed in this paper, still
outperforms the existing GNN baselines. The original
GATv2 fails to learn when the initial node embeddings
are constants, due to its reliance on softmax-normalized
attention coefficients. While GCN is able to learn,
it achieves suboptimal performance and exhibits large
fluctuations. Removing MIND-AM or MIND-MP degrades
the performance of MIND. We perform t-test on the
converged AUC values shown in Fig. 5 for MIND against
its two ablated variants, obtaining p = 8.1 × 10−4 and
p = 4.5× 10−2, respectively, highlighting the effectiveness
of the all-to-one attention mechanism to allow learnable
normalization of the messages, and the benefit of utilizing
information from all message-passing iterations to extract
deeper structural insights.

Rewiring for Training Network Diversification To
assess the effectiveness of our edge-rewiring strategy for
diversifying the training networks, we compare MIND with
the same model trained on the same networks, only without
rewiring. The results are shown in Fig. 6, with bars depicting
the effect of the diverse training set on the performance of
MIND (shorter bars correspond to higher improvement) on
real networks listed in Fig. 2. For each network, the AUC
of dismantling with the diversified (rewired) training set is
shown as the percentage of the AUC associated with no
rewiring (values below 100 indicate that training on rewired
networks has led to a better dismantling policy).

The results demonstrate that rewiring the training
networks yields an overall performance improvement on
real networks. To analyze the results, we refer to the
assortativity and modularity of the real networks in Table 4
in Appendix E. The most significant performance gains
are observed for highly modular networks. For instance,
in roads-california (third-to-last bar in the lower panel of
Fig. 6), which has a modularity of 0.975, training with
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Figure 6: Performance improvement by algorithmically
diversified training networks through degree-preserving
edge-rewirings. Bars show the AUC of the dismantling
of MIND trained on rewired networks, normalized to the
baseline without rewiring (gray dotted lines).

rewired networks led to an over 80% reduction in the
AUC of dismantling. This improvement is likely linked
to the rewiring-induced modularity into the otherwise
non-modular synthetic networks. We also observe notable
performance gains for networks with strong disassortativity.
For example, in munmun twitter social (seventh-to-last bar
in the upper panel of Fig.6), which has a degree assortativity
of −0.878, the AUC is reduced by 40%. Although the LPA
and Copying Model naturally produce slightly disassortative
networks, our diversifying rewirings enable the model to
interact with a much wider range of (dis)assortative mixings
and thereby significantly enhance the learned embedding
and policy by increased exposure to different topologies.

Conclusion
Eliminating the need for initializing GNNs with handcrafted
features is highly sought after. Besides dropping the feature
computation overhead, featureless initialization eliminates
the risk of embedding bias and grants autonomy for learning
more complex embeddings, which is key to finding better
solutions to the downstream problems. We tackled this
with two ideas: i) building an expressive message-passing
framework, and ii) exposing the model to interactions with
systematically diversified network geometries, facilitating
the learning of complex structural roles. The proposed
model, applied to the network dismantling problem,
achieved state-of-the-art performance on a comprehensive
testbed of real-world networks. Note that MIND is
computationally more efficient than the well-performing
methods of its category, machine learning methods, as well
as the well-established dismantling methods in the literature
(except for EI only on dense networks). An intriguing
conclusion is that the contributions of this manuscript
are applicable to many important network/graph problems
where an unbiased GNN embedding can be learned on
synthesized diverse data and lead to breakthrough solutions.
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Appendix

A Convergence of Node Embeddings
Let us, without loss of generality, assume a GNN with
a single attention head. For a network G with N nodes,
the embedding of node vi after k message-passing steps is
denoted by e

(k)
i ∈ RF . The matrix containing the k-th step

embeddings of all nodes is:

e(k) =


e
(k)
1

⊤

...

e
(k)
N

⊤

 ∈ RN×F . (A1)

We also define the vectorized node embeddings as:

vec(e(k)) = [e
(k)
1 ∥ . . . ∥e

(k)
N ] ∈ RNF . (A2)

Also, let W ∈ RF×F be a learnable weight matrix, and
Aα ∈ RN×N be an attention-enhanced adjacency matrix
with elements defined as:

[Aα]i,j =


αi if j = i

αi,j if j ∈ N (i),

0 otherwise
(A3)

whereN (i) denotes the set of neighbors of node i. Then, the
message-passing update in Eq. (6) can be written as:

e(k+1) = Aαe
(k)W. (A4)

Theorem 1. Assume Aα and W are both diagonalizable
with respective dominant eigenvectors u1 ∈ RN and v1 ∈
RF , whose corresponding eigenvalues are λ1 and µ1, such
that |λ1| > |λn| and |µ1| > |µn| for all n ̸= 1. Then, for
any initial embedding e(0) such that vec(e(0)) has nonzero
projection onto u1 ⊗ v1:

e(k) → u1v
⊤
1 as k →∞.

In particular, node embeddings e
(k)
i converge to a scalar

multiple of v⊤1 :

e
(k)
i → [u1]i · v1 as k →∞,

i.e., all node embeddings align in the same direction and lie
in a one-dimensional subspace of RF .

Proof. The message-passing update e(k+1) = Aαe
(k)W

can be equivalently written in vectorized form as:

vec(e(k+1)) = M · vec(e(k)), (A5)

where

M := Aα ⊗W ∈ RNF×NF .

Since both Aα and W are diagonalizable, so is M due
to properties of the Kronecker product. In particular, the
eigenvectors {un ⊗ vm} with corresponding eigenvalues
λnµm form a complete basis of RNF . The initial embedding
vec(e(0)) ∈ RNF can be expressed as:

vec(e(0)) =

N∑
n=1

F∑
m=1

cn,m(un ⊗ vm),

where cn,m ∈ C are projection coefficients; by assumption,
c1,1 ̸= 0.

After k iterations of message-passing, the following
holds:

vec(e(k)) = Mk vec(e(0))

=

N∑
n=1

F∑
m=1

cn,m(λnµm)k(un ⊗ vm)

= (λ1µ1)
kc1,1(u1 ⊗ v1)+∑

(n,m) ̸=(1,1)

(λ1µ1)
kcn,m

(
λnµm

λ1µ1

)k

(un ⊗ vm).

Since |λnµm/λ1µ1| < 1 for all (n,m) ̸= (1, 1), all non-
dominant terms vanish as k →∞, yielding:

lim
k→∞

vec(e(k)) = c1,1(λ1µ1)
k(u1 ⊗ v1)

lim
k→∞

e(k) = c1,1(λ1µ1)
k · u1v

⊤
1 .

Therefore, the following holds for each node’s embedding
e
(k)
i :

e
(k)
i → [u1]ic1,1(λ1µ1)

k · v1, as k →∞,

i.e., all node embeddings align to the same direction and
lie in a one-dimensional subspace of RF in the limit of the
message-passing iteration k.

B Estimating Structural Heuristics
In this section, we conceptually demonstrate that the node
encoding zi generated by MIND is capable of capturing
diverse spectral information, even when node features are
initialized as constants. For example, we demonstrate that



MIND with two heads can approximate the Fiedler vector.
(The eigenvector corresponding to the second smallest
eigenvalue of the graph Laplacian, often referred to as the
Fiedler vector, gives an embedding of nodes that reveals
the optimal cut and thus is extremely relevant to network
dismantling and similar problems).

We start by defining a specific message-passing operator
and analyzing its spectral properties.

Lemma 1. Let G be an undirected, non-bipartite graph with
N nodes, and let A and D denote its adjacency matrix and
diagonal degree matrix, respectively. The message-passing
operator is defined as

T :=
1

2

(
I +D−1/2AD−1/2

)
, (A6)

which has all eigenvalues lying in the interval (0, 1].
Moreover, the principal eigenvector u1 of T associated with
the eigenvalue λ1 = 1 is u1 = D1/21N .

Proof. The normalized Laplacian of G can be written as
L := I − D−1/2AD−1/2 ∈ RN×N . Since G is undirected
(i.e., L is symmetric) and non-bipartite, all eigenvalues λn

of L satisfy λn ∈ [0, 2).
We can express T in terms of L as follows:

T =
1

2
(I +D−1/2AD−1/2) = I − 1

2
L. (A7)

Let un be the eigenvector of L associated with the n-th
eigenvalue λn, i.e., Lun = λnun. Then:

Tun =

(
I − 1

2
L

)
un =

(
1− λn

2

)
un, (A8)

such that 1− λn

2 is an eigenvalue of T . Since λn ∈ [0, 2), it
follows that

1− λn

2
∈ (0, 1], (A9)

i.e., all eigenvalues of T lie in (0, 1].
In particular, the largest eigenvalue of T is 1

(corresponding to the smallest eigenvalue of L, λ = 0).
The eigenvector associated with λ = 0 for the normalized
Laplacian is proportional to D1/21N . Hence, the principal
eigenvector of T is u1 = D1/21N , up to normalization.

Next, we show that MIND can estimate the Fiedler
vector by learning to approximate specific functions in
its heads. This follows from the fact that, message-
passing operator T defined in (A6) has eigenvalues within
the range (0, 1]. Consequently, repeated message-passing
using T gradually attenuates the components of the node
embeddings e(k) that align with non-principal eigenvectors.
Among these, the component aligned with the Fiedler
vector, which corresponds to the second-largest eigenvalue
of T , decays more slowly than all others except the principal
component. As a result, as k → ∞, only the principal
and Fiedler components approximately remain, such that we
can approximate the Fiedler vector by performing repeated
message-passing with T and subsequently removing the

principal component u1 = D1/21N . In particular, MIND
with two heads, each with feature dimension F = 1, is
sufficient for such estimation:

Head 1 estimates the principal component u1 of L by
capturing the node degrees. In the first round of message-
passing, MIND can learn the self-weight W 1

σ = 0 and
the neighbor-weight matrix W 1

ν = 1. This yields e
(1)
i =

di, where di is the degree of node vi. Since the degree
information can be preserved across all subsequent layers
in Head 1 by learning the attention weights αh

i = 1 and
αh
i,j = 0 for all heads h and neighbors j, we assume that

the principal eigenvector ũ1 = D1/21N of T is stored in
Head 1.

Head 2 approximates repeated message-passing with T
by learning the following neural networks:

[T ]i,j =
MLPσ(di, · · · ) = 1

2 + 1
di
, j = i

MLPν(di, dj , · · · ) = 1
2 + 1√

didj

, j ∈ N (i)

0, o.w.,
where di and dj are learned and stored in Head 1, and Head 2
can leverage them thanks to the (MIND-AM) mechanism
proposed in this work.

The initial embedding in Head 2 is set to 1 for every
node vi ∈ V ; that is, the initial embedding vector of
Head 2 containing all node embeddings is e(0) = 1N . Let
e(k) ∈ RN denote the vector of node embeddings after
the k-th message-passing iteration in Head 2. Since T is
diagonalizable, we can express the initial embedding vector
e(0) as a linear combination of the eigenvectors u1, . . . , uN

of the matrix T :

e(0) =

N∑
n=1

cnun, (A10)

where cn denotes the projection coefficient onto un. After k
iterations of message-passing, the embedding evolves as:

e(k) = T ke(0) =

N∑
n=1

cnλ
k
nun

= c1λ
k
1u1 + c2λ

k
2u2 + ϵ

= c1D
1/21N + c2λ

k
2u2 + ϵ,

(A11)

where λ1 = 1, and ϵ captures the residual terms that decay
to zero as k →∞. Thus, e(k) asymptotically aligns with u1

while preserving a vanishing component along the direction
of u2.

Given access to e(k) and the degree estimates from
Head 1, the function MLPf in (MIND-MP) can be trained to
recover u2 by removing the projection of e(k) onto D1/21N .
Specifically:

ũ2 ≈ e(k) − ũ⊤
1 e

(k)

|ũ1|22
ũ1 ≈ Cu2, (A12)

where
√
· is the element-wise square root, and C is a

scalar constant. This demonstrates that the Fiedler vector
can naturally emerge through message-passing followed by
simple post-processing by the MLP in (MIND-MP).



C Generating Synthetic Networks

statistics mean (std) min max
size 149.62 (29.06) 100 200
avg. degree 7.49 (4.37) 1.98 19.45
min degree 3.36 (2.56) 1.00 10.00
max degree 29.17 (16.83) 7.00 102.00
assortativilty -0.06 (0.19) -0.51 0.51
modularity 0.38 (0.15) 0.14 0.85

Table 2: Statistics on synthetic networks used for training.

Random Network Models To synthesize each training
network, we randomly select one of three generation
models—LPA, Copying Model, or Erdős–Rényi (ER)—
with equal probability. The network size |V | is sampled
uniformly from the range of 100 to 200. The average degree
is determined by the parameter m drawn randomly either
from the set {1, 6, 8, 10} with probability 1/3, or from the
set {2, 3, 4, 5}with probability 2/3. For Copying Model and
LPA networks, a degree distribution (power-law) exponent
γ ∈ [2, 4] is also selected uniformly at random.

LPA model starts with a clique of m + 1 nodes. Then,
at each step, a new node forms connections to m existing
nodes with the probability of choosing an existing node to
form a connection being proportional to di + m(γ − 3),
where di is the degree of an existing node vi. This results
in a scale-free network with a power-law degree distribution
P (d) ∼ d−γ and an average degree of ⟨d⟩ = 2m. When
generating using the Copying Model, we also start with a
clique of m + 1 nodes. Each of the m edges of a newly
added node is formed by either i) connecting to a randomly
selected existing node, with probability α = 2−γ

1−γ , or ii)
connecting to one neighbor of a randomly selected existing
node, with probability 1−α. This also results in a scale-free
network with a power-law degree distribution P (d) ∼ d−γ

and an average degree of ⟨d⟩ = 2m. (LPA and Copying
Model generate fundamentally different structures given the
same parameters, due to their different mechanisms of edge
formation.) When generating using the ER model, for all
pairs of nodes, an edge will be formed with probability:

p =
[2N − (m+ 1)]m

N(N − 1)
,

leading to a network whose degree distribution is Binomial
(well-approximated by Poisson) with an average degree of
⟨d⟩ = m.

Degree-Preserving Rewiring In the next step, we
perform degree-preserving rewirings to randomize the
structural signature of the generator models, and induce
different levels of modularity and degree-assortativity in the
network. Modularity is the quality of having well-defined
communities, and degree-assortativity is the tendency of
nodes to be connected to other nodes with similar degrees.
Networks with the same exact degree sequence can have
different modularity levels (from being highly modular
to the opposite extreme of being anti-modular or almost

bipartite) and different degree mixing (from disassortative
to uncorrelated to assortative). To control these qualities
via random rewiring, as will be elaborated later, we treat
modularity (resp. degree-assortativity) as the tendency of
nodes of similar randomly assigned numerical labels (resp.
similar degree-based assigned labels) to be connected to one
another.

The degree-preserving rewiring is performed by selecting
two edges (vi, vl) and (vj , vk) (with four distinct end-nodes)
and swapping them with (vi, vk) and (vj , vl) if they do not
already exist. It can be seen that one double-edge swap
of this form will change the neighborhood of four nodes
without changing the degree of any node in the network.
We also reject an edge swap if performing it disconnects
the network into isolated components. Let li be the unique
integer label identifying node vi. Given a random double-
edge rewiring {(vi, vl), (vj , vk)} → {(vi, vk), (vj , vl)}, the
rewiring is accepted if (li − lj)(lk − ll) > 0 (resp. (li −
lj)(lk− ll) < 0) to increase (resp. decrease) the connectivity
between similarly labeled nodes; this rewiring direction can
be deemed as label-assortative (resp. label-disassortative)
regardless of whether it is used to control modularity or
degree-assortativity. The following describes the rewiring
process to diversify the random training networks.

Rewiring for Structural Diversification With a coin flip,
we choose to label the nodes either i) randomly, or ii) in
the order of their degree (nodes with the same degree are
given consecutive integers as labels). The former choice
will lead to the process of controlling the modularity of
the network, and the latter choice will lead to the control
of the network’s degree-assortativity. This controlling
of the modularity/degree-assortativity is achieved by the
iterative application of degree-preserving edge rewirings.
The target (label-)assortativity coefficient is then sampled
uniformly from the set {0.05, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}
and a random (negative or positive) sign is applied to
the coefficient. Starting with any network, we perform a
randomly picked label-assortative (resp. label-disassortative
rewiring) if the network’s current label-assortativity is below
(resp. above) the target coefficient. Double-edges rewirings,
in the appropriate direction, are iteratively performed until
the network’s assortativity (computed corresponding to the
chosen node labeling) matches the target value within
tolerance or the maximum number of rewiring attempts
is reached. Note that the resulting rewired networks will
always be connected.

D MIND Training

Training of MIND is conducted on an Ubuntu 22.04 server
with an Intel(R) Xeon(R) w9-3475X CPU (512 GB RAM)
and an RTX 5000 Ada GPU (32 GB VRAM). The same
set of hyperparameters (listed in Table 3), mostly aligned
with the hyperparameters for discrete SAC in (Huang et al.
2022), is used across all experiments. The Adam optimizer
is used for updating the neural networks. To estimate the
state-action value, we apply a forgetting factor of λ = 0.99,



Parameter Value
Total number of steps stotal 8× 106

Replay buffer size |D| 2× 106

Learning rate for Q-network 3× 10−4

Learning rate for policy network 3× 10−4

Batch size for updating |B| 512
Start learning sstart 100000
Target Q-network update factor 1
Forgetting factor γ 0.99
Policy network update frequency 4
Target network update frequency 8000
Node embedding size F 4
Number of heads H 4
Message-passing iterations K 6
MLPσ and MLPν structure 16, [32], 1
MLPθ and MLPϕ structure∗ 196, [256, 256], 1
∗ MLPζ is merged into MLPθ and MLPϕ.

Table 3: The hyperparameters of MIND. For Neural
Networks, the first number is the input size, the numbers
in [·] are the size of the hidden layers, and the last number is
the output size.

resulting in the following:

Q(Gt, vi) = rt + E

|V0|−1∑
k=t+1

γk−trk

 , (A13)

which slightly discounts future AUC contributions but
effectively prevents unbounded growth of the cumulative
AUC for large networks. To stabilize the bootstrapping
estimation of Q(Gt, vi), we use target Q-networks that
remain fixed for 8000 steps before being updated. By setting
the target Q-network update factor to 1, the target networks
are synchronized with the main Q-networks every 8000
steps. The pseudo-code for the training process of MIND
is provided in Algorithm 1.

E Statistics on the Real Networks
In Table 4, we present key statistics of the real-world
networks used in the Experiments section. Specifically,
we report the total number of nodes |V |, average degree,
degree-assortativity coefficient (within the range [−1, 1]),
and modularity (within the range [−1, 1]) of each network.
The table shows that these networks span a wide range of
sizes (from 128 to 1.4 million nodes) and average degrees
(from 2 to 33). Many real networks are disassortative
(or exhibit negative degree-assortativity), whereas certain
networks—mostly technological networks—have very high
modularity.

F Per-Network Results on Real-World
Networks

In Table 5, we report numerical values of the relative AUC
of the dismantling curve, given by every method on all of
the real-world networks. These values are used to generate
the scatter and bar plots in Fig 2.

Algorithm 1: MIND Training
Initialization: Diversified set of training networks G; state-
action value networks Qi and corresponding target networks
Qtarg,i (i = 1, 2); policy network π; empty replay buffer
D; random sampling steps sstart; target network update
frequency ftarg; global step s = 0;

1: sample G0 ∼ PG ; initialize episode t = 0;
2: while s < stotal do
3: if s < sstart then
4: randomly choose vt ∈ Vt;
5: else
6: vt = π(Gt);
7: end if
8: Gt+1 = Gt \ {vt};
9: Store transition (Gt, vt, rt, Gt+1) in D;

10: t += 1; s += 1;
11: if LCC(Gt) < 0.1|V0| then
12: Sample G0 ∼ PG ; reset episode t = 0;
13: end if
14: if s > sstart then
15: Randomly sample B from D;
16: Update Qi, i = 1, 2, by gradient descent with*:

1

|B|
∑
B
(Qi(Gt, vt)− (rt + γQ̂′))2;

17: Update π by gradient ascent with

1

|B|
∑
B

min
i=1,2

Qi(Gt, π(Gt))− α log(π(Gt)|Gt);

18: if mod(s, ftarg) = 0 then
19: Update target networks:

Qtarg,i ← Qi, i = 1, 2;

20: end if
21: end if
22: end while
* Define Q̂′=Eπ[mini=1,2 Qtarg,i(Gt+1,vt+1)−α log π(vt+1|Gt+1)].



Network |V | avg. deg. assortativity modularity
biological

arenas-meta 453 9.01 -0.214 0.445
dimacs10-celegansneural 297 14.46 -0.163 0.384
foodweb-baydry 128 32.91 -0.104 0.178
foodweb-baywet 128 32.42 -0.112 0.180
maayan-Stelzl 1706 3.74 -0.187 0.618
maayan-figeys 2239 5.75 -0.331 0.465
maayan-foodweb 183 26.80 -0.254 0.364
maayan-vidal 3133 4.29 -0.097 0.678
moreno propro 1870 2.44 -0.152 0.847

social
advogato 6539 13.24 -0.061 0.461
douban 154908 4.22 -0.180 0.598
ego-twitter 23370 2.81 -0.478 0.895
hyves 1402673 3.96 -0.023 0.771
librec-ciaodvd-trust 4658 14.22 0.104 0.434
librec-filmtrust-trust 874 3.00 0.078 0.754
loc-brightkite 58228 7.35 0.011 0.679
loc-gowalla 196591 9.67 -0.029 0.713
munmun digg reply LCC 29652 5.72 0.003 0.406
munmun twitter social 465017 3.58 -0.878 0.649
opsahl-ucsocial 1899 14.57 -0.188 0.262
pajek-erdos 6927 3.42 -0.116 0.696
petster-hamster 2426 13.71 0.047 0.549
slashdot-threads 51083 4.60 -0.034 0.483
slashdot-zoo 79116 11.82 -0.075 0.341
soc-Epinions1 75879 10.69 -0.041 0.443

information
cit-HepPh 34546 24.37 -0.006 0.725
citeseer 384413 9.07 -0.061 0.800
com-amazon 334863 5.53 -0.059 0.926
com-dblp 317080 6.62 0.267 0.820
dblp-cite 12591 7.88 -0.046 0.633
dimacs10-polblogs 1224 27.31 -0.221 0.427
econ-wm1 260 19.65 0.032 0.268
linux 30837 13.86 -0.174 0.480
p2p-Gnutella06 8717 7.23 0.052 0.388
p2p-Gnutella31 62586 4.73 -0.093 0.502
subelj jdk jdk 6434 16.68 -0.223 0.494
subelj jung-j jung-j 6120 16.43 -0.233 0.471
web-EPA 4271 4.17 -0.303 0.647
web-Stanford 281903 14.14 -0.112 0.927

technological
eu-powergrid 1467 2.48 -0.064 0.926
gridkit-eupowergrid 13844 2.50 0.014 0.966
gridkit-north america 16167 2.50 0.050 0.968
internet-topology 34761 6.20 -0.215 0.610
london transport multiplex aggr 369 2.33 0.137 0.829
opsahl-openflights 2939 10.67 0.051 0.635
roads-california 21048 2.06 -0.002 0.975
roads-sanfrancisco 174956 2.54 0.083 0.986
tech-RL-caida 190914 6.37 0.025 0.856

Table 4: Statistics on the real networks.



Network AD BC PR MS EI GND FINDER GDM MIND
biological

arenas-met 100.6 138.3 111.5 117.0 117.0 125.3 107.3 97.1 100.0
dimacs10-c 117.3 142.5 132.5 133.8 120.3 96.7 115.5 113.8 100.0
foodweb-bd 108.4 120.9 133.2 115.4 113.8 115.5 107.7 110.6 100.0
foodweb-bw 107.4 121.7 133.3 115.2 112.0 118.9 106.4 107.8 100.0
maayan-Ste 104.9 140.3 116.1 114.3 116.9 147.6 103.2 102.4 100.0
maayan-fig 103.7 157.9 131.0 133.2 160.5 107.4 102.2 103.0 100.0
maayan-foo 120.2 132.2 124.5 162.0 154.9 116.8 104.5 104.8 100.0
maayan-vid 107.2 128.6 113.2 118.4 105.4 115.2 101.0 103.7 100.0
moreno pro 124.1 157.6 135.5 156.0 94.4 124.4 114.6 107.4 100.0

social
advogato 107.6 121.1 158.5 119.0 117.8 113.9 103.9 105.6 100.0
douban 108.0 117.4 102.3 126.9 115.4 115.6 95.0 95.7 100.0
ego-twitte 110.3 135.0 109.1 169.4 104.3 118.3 112.2 101.2 100.0
hyves 111.5 159.6 104.2 135.3 169.1 110.7 102.6 100.5 100.0
librec-cia 132.4 129.3 135.6 142.4 145.6 127.3 116.1 112.5 100.0
librec-fil 122.8 166.0 137.6 176.1 117.8 113.7 125.2 109.8 100.0
loc-bright 112.4 139.1 118.8 121.7 111.4 114.2 109.7 113.9 100.0
loc-gowall 106.5 148.8 114.8 112.3 101.5 110.0 105.5 106.5 100.0
munmun dig 104.7 124.9 113.1 105.1 116.2 123.5 103.3 106.2 100.0
munmun twi 101.3 103.3 90.7 138.4 124.9 103.6 102.9 98.5 100.0
opsahl-ucs 107.7 118.4 114.2 117.3 127.8 131.6 105.0 107.8 100.0
pajek-erdo 103.8 107.1 103.7 123.3 120.3 112.7 102.5 100.4 100.0
petster-ha 128.4 129.6 141.4 174.5 108.7 96.8 129.2 104.6 100.0
slashdot-t 103.6 118.9 108.8 122.5 127.5 104.2 101.8 104.1 100.0
slashdot-z 103.8 134.6 112.1 121.9 131.2 107.6 101.9 108.4 100.0
soc-Epinio 100.7 120.3 104.1 117.4 115.6 99.6 97.0 99.8 100.0

information
cit-HepPh 121.5 138.3 133.7 125.3 115.6 90.5 120.1 121.0 100.0
citeseer 109.3 165.7 128.0 118.9 106.0 109.2 107.0 106.9 100.0
com-amazon 123.1 172.1 122.6 152.8 75.5 nan 122.2 107.0 100.0
com-dblp 114.3 121.0 109.5 180.0 88.5 106.9 115.6 97.5 100.0
dblp-cite 124.8 130.8 126.1 153.7 122.8 124.5 117.0 110.0 100.0
dimacs10-p 111.5 125.4 122.9 117.5 126.2 117.5 107.8 109.3 100.0
econ-wm1 103.4 125.0 123.4 101.5 120.6 122.8 92.4 94.2 100.0
linux 128.6 404.0 194.7 166.0 93.5 108.3 124.2 110.7 100.0
p2p-Gnutel 115.5 126.0 118.8 115.8 115.5 136.8 112.2 106.4 100.0
p2p-Gnutel 110.7 131.5 112.0 110.8 114.3 135.6 107.4 101.5 100.0
subelj jdk 112.6 339.3 141.0 141.4 110.6 105.2 102.2 97.8 100.0
subelj jun 124.1 340.3 153.2 145.5 120.4 103.8 109.5 101.7 100.0
web-EPA 109.3 147.3 112.2 169.0 150.9 158.6 106.7 106.9 100.0
web-Stanfo 209.8 239.9 173.3 nan 65.1 114.8 207.2 98.9 100.0

technological
eu-powergr 151.5 190.5 196.5 317.5 80.6 82.8 161.7 109.1 100.0
gridkit-eu 136.0 175.8 132.2 256.1 36.4 64.0 132.2 97.6 100.0
gridkit-no 124.7 149.4 133.5 184.1 26.3 56.4 137.0 95.0 100.0
internet-t 102.0 126.5 112.4 142.6 117.2 98.4 102.2 102.9 100.0
london tra 129.2 152.9 134.1 124.3 112.0 93.5 129.0 105.4 100.0
opsahl-ope 135.2 131.3 130.9 167.1 116.8 107.6 120.5 106.2 100.0
roads-cali 192.8 882.0 125.1 114.9 23.4 78.0 116.3 92.2 100.0
roads-sanf 184.5 51.6 258.8 160.4 15.5 30.0 176.4 92.0 100.0
tech-RL-ca 120.7 172.6 121.3 157.3 78.5 112.1 116.2 106.9 100.0
Overall 119.9 167.8 129.5 142.8 108.0 109.1 115.0 104.2 100.0

Table 5: Performance of different methods on real networks.


