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Abstract— This work aims to classify physiological states
using heart rate variability (HRV) features extracted from
electrocardiograms recorded in the ears (ear-ECG). The physio-
logical states considered in this work are: (a) normal breathing,
(b) controlled slow breathing, and (c) mental exercises. Since
both (b) and (c) cause higher variance in heartbeat intervals,
breathing-related features (SpO2 and mean breathing interval)
from the ear Photoplethysmogram (ear-PPG) are used to facil-
itate classification. This work: 1) proposes a scheme that, after
initialization, automatically extracts R-peaks from low signal-
to-noise ratio ear-ECG; 2) verifies the feasibility of extracting
meaningful HRV features from ear-ECG; 3) quantitatively
compares several ear-ECG sites; and 4) discusses the benefits
of combining ear-ECG and ear-PPG features.

I. INTRODUCTION

Non-invasive Heart Rate Variability (HRV) monitoring re-
lies on the Electrocardiogram (ECG) or Photoplethysmogram
(PPG) recordings. Wearable devices, which do not interfere
with the everyday activities of subjects, are ideal for the daily
monitoring of HRV. Among wearable devices, ear-based
devices, also known as hearables, are attracting increasing
attention as they can be fitted to headphones or earplugs
[1], [2], [3]. Also, given that the head is in a much more
stable position with respect to the vital organs, compared
to e.g. the wrist, signals recorded from the ears are less
affected by artefacts and are therefore better suited for 24/7
monitoring. Recent work also proved the possibility of ear
electroencephalogram artefact-removal [4], [5].

In [1], [2], the theoretical feasibility of measuring ECG
from around the ear was proven. For real-life recordings,
several ECG sites around the ear were quantitatively com-
pared in [6], and the ECG measured from the mastoid
showed adequate quality for HRV monitoring. Besides ear-
ECG, recent research also proved the benefits of ear-PPG
against finger PPG: 1) it shows stronger breathing variation
and is, therefore, more suited for extracting breathing-related
features [7], [8]; and 2) it has a significantly faster response
time to drops in SpO2 [3].
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Despite the proven possibility of ECG measurement from
around the ear, the feasibility of ear-HRV monitoring has not
yet been verified on real-life data. The ear-ECG feasibility
studies have demonstrated the inherent advantages of ear-
ECG and ear-PPG configurations, but have also highlighted
that the applications face two challenges. First, many phys-
iological states are difficult to distinguish by HRV alone.
For instance, both controlled slow breathing at 0.1Hz fre-
quency and mental exercise cause increased HRV [9], [10].
The scenario where both states are present was not widely
discussed. Second, due to lower signal amplitudes, ear-ECG
and ear-PPG have relatively low signal-to-noise ratios (SNR).
The matched filter and Hilbert transform (MFHT) algorithm
[11] performed well on the detection of R-peaks in low-SNR
wearable ECG signals, though requiring a manually selected
QRS pattern to act as a template.

This study contributes to the topic of ear physiological
state monitoring in four aspects:

• It uses higher-SNR arm ECG to pre-train MFHT tem-
plate and quantitatively compares the method to the
classic Pan-Tompkins’ method (PT) [12].

• To the best of our knowledge, this is the first time to
verify the feasibility of ear-ECG HRV monitoring.

• It includes both controlled slow breathing and mental
exercises in the protocol to simulate real-life scenarios.

• It proves the benefits of using ear-PPG to aid physio-
logical state classification.

II. CONFIGURATION
A. Recording Set-up

For this study, 7 healthy subjects (5 males and 2 females)
aged 20-30 were recruited. Multiple ear-ECG sites and one
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Fig. 1. Sensor placement used for recording ear-ECG and ear-PPG signals.
The in-ear ECG signal was recorded via a flexible cloth electrode attached
to a viscoelastic earplug.



ear-PPG site were recorded. The three ear-ECG sites, which
enabled site-specific signal comparison, were: in-ear, concha,
and mastoid (marked in blue in Fig. 1). For all ear-ECG sites,
the same site at the other ear was used as the respective
reference. Prior to starting the recording, the mastoid and
the concha were abraded by an abrasive electrode gel, and
silver cup electrodes were held in position with conductive
paste fixed with medical tape. For in-ear ECG, viscoelastic
earplugs and cloth electrodes [13] were used. The cloth
electrodes were covered with conductive gel before inserting
to ensure closer fit and lower impedance. The PPG sensor
(marked in red in Fig. 1) was taped behind the right ear. All
signals were recorded simultaneously via our custom-made
bio-amplifier, the BioBoard.

B. Protocol

As mentioned in Section I, this work collected responses
to both controlled slow breathing and mental exercises in the
recording protocol to simulate real-life scenarios. The record-
ings were guided by specially designed MATLAB apps.
The use of interactive apps ensured an accurate partition of
recording sessions. Subjects were also free to progress at
their will, which reduced the outlier data caused by subjects
not being familiar with the procedures.

The recording protocol contained three sections as shown
in Fig. 2. Before starting the recording, subjects rested for
10 minutes. In session (a), normal breathing, subjects sat
breathing normally for 5 minutes. In session (b), slow breath-
ing, subjects breathed with a fixed breathing rate (0.1Hz
frequency) following an on-screen indicator. After sessions
(a) and (b), subjects rested for 10 minutes. Before proceeding
to session (c), mental exercises, subjects were allowed free
practice of the interface. When session (c) began, subjects
were told to accurately answer as many mental exercises
as possible in 5 minutes. Two kinds of mental exercises
were given: colour-word test [14] and Raven’s standard test
[15]. Before starting the protocol, each subject gave written
consent. The protocol has been approved under the IC ethics
committee approval JRCO 20IC6414.

TABLE I
EXTRACTED FEATURES

ECG Time Domain (t)
HR heart rate per minute
RMSSD root mean square of adjacent RR interval difference
pNN50 ratio of RR intervals with >50ms adjacent difference
SDNN standard deviation of RR intervals

ECG Frequency Domain (f)
LF power of the lower frequency band (0.04 to 0.15Hz)

of RR interval signal
HF power of the higher frequency band (0.15 to 0.4Hz)

of RR interval signal
LF/HF ratio between LF and HF

PPG (p)
SpO2 peripheral capillary oxygen saturation
MBI mean breathing interval

Fig. 2. The recording protocol used in this research. The whole process
was guided by an interactive app to ensure consistency among all subjects.

Fig. 3. Illustration of the mMFHT method [11] for R-peak extraction from
ear-ECG. An improvement in amplitude difference between the ear-ECG R-
peak and the false peak was observed.

III. METHODOLOGY

A. ECG Features

As summarized in [10], [16], heart rate (HR) and HRV
features proved effective in distinguishing mental exercises
from normal states. To calculate HRV features, the R-peaks
of ear-ECG should be extracted, while the RR interval signal
is used to calculate the features in Table I.

Before starting, all ECG signals were pre-processed using
band-pass filters between 2 and 12Hz. Different from [11],
zero-phase filters were used in this work to minimize phase
distortion. The multi-channel MFHT (mMFHT) was used
to locate the R-peaks. First, mMFHT identified 50 R-peaks
(using MATLAB findpeaks function) in high SNR arm
ECG reference. Let the index of the i-th arm ECG R-peak



be ni, i ∈ 0, 1, ..., 49. Since the ear-ECG signal, x, and arm
ECG were measured synchronously, the i-th ear-ECG R-peak
also has an index ni. Under a 200Hz sampling rate, the ear-
ECG template used for matched filtering was

h =
1

50

49∑
i=0

x[ni − 69 : ni + 50] (1)

The template h had a length of 0.6 seconds, which was
sufficient to cover the QRS pattern. After the determination
of h, the arm ECG reference was no longer used. The
subsequent procedures of mMFHT were similar to MFHT
in [11]. The cross-correlation between the determined QRS
template h and ear-ECG signal x was calculated as

y[n] =
∑
k

h[k]x[n+ k] (2)

The Hilbert transform, yh, of y was used to form a positive
envelope signal, a, which was calculated as

a[n] =
√
y2[n] + y2h[n] (3)

The R-peaks of ear-ECG were extracted from signal a. As
shown in Fig. 3, the mMFHT greatly improved the promi-
nence of R-peaks against false peaks caused by noise. Based
on R-peaks extracted by mMFHT, the time and frequency
domain ECG features in Table I were calculated.

B. PPG Features

Since both session (b), slow breathing, and session (c),
mental exercises, in the recording protocol (Fig. 2) cause
more variance in RR intervals, we explored the possibility
of using breathing-related features, SpO2 and mean breathing
interval (MBI), to aid the classification of the two. The
calculation of SpO2 and MBI is commonly based on PPG.
Several works show that compared to finger PPG, ear-
PPG has stronger breathing-related fluctuations and responds

Fig. 4. Ear-PPG signals. (a) The AC and DC amplitudes of the ear-PPG
signal. (b) Extracting MBI using the fluctuating ear-PPG baseline.

faster to oxygen level changes [3], [7], [8]. The reason might
be that the in-ear site is less affected by vasoconstriction
and has a relatively constant distance from vital organs. This
work extracts SpO2 and MBI from ear-PPG.

The ear-PPG sensor (MAX30101 by Maxim Integrated)
has both red (660nm) and infrared (880nm) light sources.
Using the manufacturer suggested calibration [17], the SpO2

was calculated as

SpO2 = 104− 17× ACred/DCred

ACinfrared/DCinfrared
(4)

The extraction of the AC amplitudes involved three steps.
First, the signal was band-passed between 1 and 25Hz using
a zero-phase IIR filter with a minimum degree that achieved
60dB stop-band attenuation. Second, the peaks and troughs
of the filtered signal were identified using the MATLAB
function findpeaks. To identify troughs, the signal was
inverted. Two three-point median filters were applied to the
extracted peaks and troughs to remove the artefact peaks.
Third, the peaks and troughs were interpolated with splines
using the MATLAB interp1 function. A schematic of
the interpolated peak signal and trough signal is shown in
Fig. 4 (a). The interpolated peak signal subtracted by the
interpolated trough signal gave the AC signal, which was
averaged to give the AC amplitude. To extract DC amplitudes
from the red and infrared signals, ear-PPG was low-pass
filtered at 0.02Hz. The average of the filtered signal was
the extracted DC amplitude.

This work extracted MBI by observing the baseline wan-
ders of PPG signal [18]. As illustrated in Fig. 4 (b), the
PPG baseline shows fluctuations corresponding to inhaling
and exhaling. To obtain the PPG baseline, the raw ear-PPG
signal was first band-pass filtered between 0.05Hz and 30Hz.
Afterwards, a 3 seconds moving average filter was applied.
Next, baseline peaks were found based on the premise that
the minimum breathing interval was larger than 1 second, and
then MBI was the average of PPG baseline peak intervals.

IV. RESULTS AND DISCUSSION

A. mMFHT vs. PT

The ear-ECG R-peak extraction method (mMFHT) pro-
posed in Section III-A was compared with the standard PT
algorithm [12]. Since the focus is ECG R-peaks instead of
morphology, the arm ECG has adequate accuracy to serve as
the ground truth. To ensure the validity of the evaluation, the
arm ECG R-peaks were manually scrutinized. If an identified
ear-ECG R-peak was within the 30ms range of a ground truth
peak, the identification was considered correct. To illustrate
the performance gap between mMFHT and PT, the ear-ECG
with the lowest SNR (detail in Section IV-B) was used for
comparison.

The metrics used for comparison were: precision, recall,
F1, and mean offset. The precision and recall are calculated
as

precision =
TP

TP + FP
recall =

TP

TP + FN
(5)



Fig. 5. Identification of R-peaks for subjects #1, #5, #6, and #7. Large
artefacts caused errors in the adaptive threshold of the PT algorithm.

TABLE II
PERFORMANCE OF MMFHT [11] AND PT [12] ON IN-EAR ECG

Method precision recall F1 mean offset
PT 0.49 0.88 0.63 13ms
mMFHT 0.85 0.83 0.84 8ms

where TP is the number of correctly identified R-peaks, FP
is the number of falsely identified R-peaks, and FN is the
number of missed R-peaks. High precision and low recall
means the method identifies fewer R-peaks but with higher
confidence, and vice versa. The F1 score combines precision
and recall and is calculated as

F1 = 2 ∗ precision× recall

precision+ recall
(6)

For subjects #1, #5, #6, and #7, mMFHT was able to
identify R-peaks with average F1 = 0.58. However, large
artefacts caused errors in the adaptive threshold of PT,
therefore PT was not able to identify any R-peak for large
fractions of the recordings (Fig. 5). For subjects #2, #3, and
#4, the average precision, recall, F1, and mean offset are
shown in Table II. It was observed that, despite slightly
lower recall (5%), mMFHT outperformed PT in the low-
SNR setting.

B. Ear-ECG Site Comparison

Table III shows the comparison of different ear-ECG sites
with arm ECG as the ground truth. The results in Table III
shows the average over all 7 subjects, with the variance given
in the brackets. In terms of R-peak extraction accuracy, it was
observed that mastoid > concha > in-ear. The mastoid ECG
had F1 > 0.95, with a small cross-subject variance (0.03).
The in-ear ECG, on the other hand, showed a big cross-
subject variance. For subjects #2, #3, and #4, the F1 of in-ear
ECG ranged from 0.82 to 0.89, while for other subjects’ F1

ranged from 0.44 to 0.74. Since for some subjects, ear-ECG

TABLE III
COMPARISON OF EAR-ECG SITES, WITH THE VARIANCE IN BRACKETS

precision recall F1

Mastoid 0.96 (0.02) 0.97 (0.04) 0.97 (0.03)
Concha 0.78 (0.18) 0.76 (0.19) 0.77 (0.18)
In-ear 0.68 (0.16) 0.67 (0.18) 0.69 (0.15)

Fig. 6. Classification results based on different feature combinations. On
the horizontal axis, t, f, p represent respective classifiers trained with the
time domain ECG, frequency domain ECG, and PPG features, defined in
Table I. Here, tf designates classifiers trained using the combination of time
and frequency domain ECG features, tp represents classifiers trained using
the combination of time domain ECG features and PPG features, and so on.

R-peaks could be extracted from all sites with F1 > 0.89,
it was suspected that the observed inconsistent site quality
was not physiological. Rather, it could be that the optimum
set-up for ear-ECG was harder to achieve compared to the
mastoid. Nevertheless, due to the accuracy and consistency
of mastoid ECG, the ear-ECG site was used for ECG feature
extraction for the rest of this paper.

C. Physiological State Classification

Classification: This work adopted a physiological state
classification task to verify the proposed configuration. As
Fig. 2 shows, three 5-minute recordings of state (a) normal
breathing, (b) slow breathing, and (c) mental exercises (Fig.
2) were available for each subject. Ear-ECG (mastoid) and
ear-PPG features shown in Table I were extracted. Different
combinations of the extracted features were fed to three
classifiers: random forest, SVM, and naive Bayes. The ran-
dom forest classifier was set to have 250 trees. The SVM
used a second-order polynomial kernel. All accuracies were
calculated by 49-fold leave-one-out cross-validation. In each
fold, data from 6 subjects were used to train the classifiers
while data from 1 subject was used for testing. During the
49-fold cross-validation, each subject was left out 7 times.

The naive Bayes achieved the best overall performance
(95% using fp). It was also observed that adding p generally
improved classification accuracy. For SVM, tp outperformed
t by 18%, fp outperformed f by 13%, while tfp was similar
to tf. For naive Bayes, though tp had a 3% drop compared
to t, fp outperformed f by 18%, tfp was similar to tf.

The classification of only (a) and (c) without (b) was also
verified, in which SVM achieved nearly perfect classification
using tf, tp, or tfp features. As hypothesized, the incor-



Fig. 7. Permutation feature importance for the random forest classifier.
All features (HR, LF, HF, etc.) defined in Table I were used to train the
classifier. The top graph was calculated for the binary classification of the
sessions: (a) normal breathing and (c) mental exercise. The bottom graph
was calculated for the classification of the sessions: (a) normal breathing,
(b) slow breathing, and (c) mental exercise.

TABLE IV
CROSS-SUBJECT PERFORMANCE OF THE THREE CLASSIFIERS

#1 #2 #3 #4 #5 #6 #7
Random Forest 35.3 33.3 100 98.0 33.3 93.7 95.3

SVM 33.3 95.3 100 33.3 95.0 93.7 100
Naive Bayes 66.7 95.3 100 66.7 95.0 93.7 100

Best 66.7 95.3 100 98.0 95.0 93.7 100

poration of both (b) and (c) made the physiological state
classification task harder.
Feature importance: To examine whether adding ear-PPG
features helped solve the more complicated classification
problem of (a), (b) and (c), we calculated the permutation
feature importance, which was defined as the decrease in
accuracy after randomly permuting the data of one feature.
Fig. 7 shows the feature importance without and with (b)
controlled slow breathing. An increase in the importance
of breathing-related features (MBI and SpO2) was observed
when (b) was present. Although both (b) and (c) cause
variance in heartbeat intervals, (b) is related to less stress,
and (c) to more stress. Therefore an increase in feature
importance was observed for features that reflect stress (HR
and SpO2) and the sympathovagal balance (HF and LF/HF).
Leave-one-out test: To verify the cross-subject robustness
of the proposed methods, a leave-one-out test was conducted
(Table IV). For column #i, data of the i-th subject was used
as the test set, with data of other subjects as the train set. All
tfp features were used to train the classifiers. It was observed
that the proposed scheme generalized to subjects well, except
for subject #1.

V. CONCLUSIONS

This work has demonstrated the feasibility of extracting
meaningful HRV features from ear-ECG. Despite the lower
SNR, R-peaks were extracted from the mastoid with high
accuracy using mMFHT. In terms of ECG R-peak retrieval
accuracy, the mastoid has proved better than the concha,
while the concha was better than the in-ear site. This
work has also proved that the combination of breathing-
related features (SpO2 and MBI) from ear-PPG with ear-

ECG features improved physiological state classification
performance, especially in the more complicated case where
both (b) controlled slow breathing and (c) mental exercises
were present.

Future work will explore the potential for longer-term
(24h) HRV monitoring. Compared with standard chest ECG
and finger PPG configurations, ear-ECG and ear-PPG could
be integrated with headphones and worn for longer periods.
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