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Abstract—Graph Neural Network (GNN) is the state-of-the-
art machine learning model on graph data, which many modern
big data applications rely on. However, GNN’s potential leakage
of sensitive graph node relationships (i.e., links) could cause
severe user privacy infringements. An attacker might infer the
sensitive graph links from the posteriors of a GNN. Such attacks
are named graph link inference attacks. While most existing
research considers attack settings without malicious users, this
work considers the setting where some malicious nodes are
established by the attacker. This setting enables link inference
without relying on the estimation of the number of links in the
target graph, which significantly enhances the practicality of link
inference attacks. This work further proposes centroid-guided
graph poisoning (CGP). Without participating in the training
process of the target model, CGP operates on links between
malicious nodes to make the target model more vulnerable to
graph link inference attacks. Experiment results in this work
demonstrate that using less than 5% of malicious nodes, i.e.
modifying approximately 0.25% of all links, CGP can increase
the F-1 of graph link inference attacks by up to 4%.

Index Terms—Centroid-guided graph poisoning, graph link
inference attacks, graph neural networks

I. INTRODUCTION

Graph data is drawing increased attention in big data
applications because it effectively portrays the connections and
dependencies among various entities. Some examples of graph
data are the citation networks of published scientific papers
[1], [2] and the hyperlinks between weblogs [3]. To learn the
representations of relationships within graph data, graph neural
networks (GNNs), which reflect graph relationships through
node embeddings, were developed [4].

Although GNN achieved ground-breaking results and be-
came the de facto technique in many graph-related appli-
cations [5]-[7], its privacy risks were not well investigated.
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Fig. 1. Example of GNN leaking user relationships in infection prediction.

In particular, attackers may infer sensitive user relationships
through graph link inference. Illustrated as an example in Fig.
1, to predict disease infection, users contribute to a server
their infection histories, which act as node features, and their
social relationships/interactions, which form a social graph.
The server builds a GNN based on the social graph and
predicts the likelihood of each user getting the disease in the
future. A malicious third party (i.e., the attacker) can use the
feedback from the server (i.e., the node posteriors) to infer
user relationships (i.e., the graph links). Such attacks, namely
graph link inference attacks, can pose great privacy threats
to users since the links in graphs usually contain sensitive in-
formation, such as social relationships [8] or mobility patterns
of people [9].

Existing works consider link inference attacks without mali-
cious users. It is assumed that the third-party attackers can only
access GNN posteriors and are not involved in the training of
the target GNN. These works commonly rely on the distance
between nodes’ posteriors in the feature space. Intuitively, the
posteriors of linked nodes are closer in the features space,
whereas the posteriors of un-linked nodes are further in the
features space [10], [11]. Based on this assumption, [12] used a
simple distance-based k-closest principle, which predicts links
between the k closest node posterior pairs. However, the k-
closest method has three limitations. First, it is sensitive to the
selection of distance functions [12]. Second, it is sensitive to
the choice of k. Third, the distances between all node posterior
pairs need to be considered before making link predictions.

The sensitivity to k of the k-closest method is especially
problematic for real-life applications of graph link inference
attacks. For the k-closest method, only k positive predictions
are made, therefore k£ reflects a rough estimation of the
number of links in the target graph. However, estimating
k without knowing the graph structure or graph meta-data
(such as the average node degree) is very challenging. Results
from previous works showed that small changes in k led
to big performance changes, even rendering the predictions
ineffective [12], [13].

This work takes a more proactive perspective for the attack-
ers, where a small percentage of malicious nodes (< 5%) are
established by the attacker. This is a practical real-life attack
setting [14]. In the infection prediction example in Fig. 1, the
attacker, even as a third party, can create a small percentage
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of “fake” users in the system. As shown in this work, once
malicious nodes are available, graph link inference attacks can
be enhanced from two aspects: (a) graph poisoning and (b)
supervised attack.

For (a) graph poisoning, by operating links between the
malicious nodes, this work proposes to poison the target GNN
model to make it more vulnerable to graph link inference
attacks. A method called centroid-guided graph poisoning
(CGP) is proposed, which has the following three properties:
1) It relies only on less than 5% of malicious nodes, i.e.
approximately 0.25% of all links, 2) it works offline without
needing to participate in the training of the target GNN model,
and 3) despite only changing the links between malicious
nodes, it affects the inherent structure of the whole graph and
the clustering of all node posteriors.

For (b) supervised attack, the links between malicious
nodes form a “shadow dataset” that can be used to train a
supervised graph link inference attack model. By transforming
the attack into a supervised binary classification problem, we
can address the three problems of k-closest link inference
attacks mentioned above.

The findings in this work draw attention to the threat to
GNN privacy posed by malicious users. The introduction of
a small percentage of malicious users greatly enhances the
practicality of graph link inference attacks. To summarize, the
main contributions of this paper are as follows.

o This work characterizes two potential graph link infer-
ence attack settings: without and with malicious users.

o This work explores how the existence of malicious users
potentially affects the paradigm of graph link inference
attacks.

o This work further exploits the attack setting with mali-
cious users by proposing CGP, which increased the F-1
of link inference by up to 4%.

This paper is organized as follows: Section II introduces
the link inference attack setting without malicious users. The
corresponding attack method (i.e., the k-closest method) and
the challenges it faces are explained. Section III explains the
more proactive link inference attack setting, where malicious
users exist. The malicious users enable (a) graph poisoning
and (b) supervised attack, which solve the challenges in the
k-closest method. Section IV compared graph link inference
attacks without and with malicious users. Section V concludes
the risk of leaking sensitive links posed by malicious users.

II. BACKGROUND
A. Preliminaries

Graph is defined as G = (V, &), where V denotes a set
of N nodes, £ C N x N represents the links between nodes
in V. The links in £ can be completely characterized by the
adjacency matrix A € RV>¥_ For undirected graphs, if link
exists between node i and node j, then A;; = A;; = 1.
Otherwise, Ai’j = Aj’i =0.

Graph Convolutional Network (GCN) was proposed by
Thomas Kipf and Max Welling [10]. It is currently one of the
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Fig. 2. (a). Graph link inference attack without malicious users. (b). Graph
link inference attack with malicious users. The attacker makes use of malicious
users to poison the target model and increase link inference accuracy.

most prominent variants of GNN [15]. A GCN layer follows
the following propagation rule:

H=cD *AD:XW) (1)

Here, A = A + 1. A is the adjacency matrix of graph G. D
is the degree matrix of A. X € RN*F is the input feature
matrix for N users each with F' node features. W € R*¥ is
the trainable parameters of the model. H € RY*¥ is the node
posteriors. o(+) is a nonlinear activation. A GNN containing
GCN layers can have multiple GCN layers. However, in most
cases, 1 or 2 GCN layers are utilized and extra layers might
cause a performance decrease [16]. In this work, we focus on
graph inference attacks on GCN.

Graph Link Inference Attack targets sensitive links in the
graph collected by the GNN service provider. On the service
provider (i.e. the target model) side, the target graph G and
node features X of users are collected and used to train a
GNN, which outputs node posteriors H. The objective of the
graph link inference attack is to infer the £ based on H.

B. Graph Link Inference Attack without Malicious Nodes

As mentioned in Section I, the k-closest method has been
thoroughly discussed in the literature [12]. Nevertheless, this
section introduces the settings and methodologies of the k-
closest method to facilitate the illustration of the graph link
inference attack problem. This technique also acts as a baseline
in the scope of this work.

The attack setting without malicious nodes (Fig. 2 (a)) is the
strictest setting, where the attacker only has access to the node
posteriors of the target GNN model. Neither model parameters,
structures, nor gradients are available to the attacker. While
attempting to infer the edges, the attacker works offline, i.e.
without participating in the training of the target model.



In this setting, the commonly used attack method is the k-
closest method, which works in an unsupervised manner. The
k-closest method is based on the intuition that nodes with
similar posteriors/predictions are more likely to be connected
[12]. The “similar” here means distance in the feature space.
Let the node posteriors, i.e. the attacker’s information, be H €
RNV*E where N is the number of users, E is the size of node
posteriors. The i-th row of H, h; € RE, is the node posterior
of node i. The k-closest method starts by constructing a set
of node posterior pairs as illustrated below:

P = {(ho,hl), (ho, ].'12)7 ey (ho, thl); (hl, hg), P }
2
For N users, there are N(N —1)/2 node posterior pairs in P.
For each node posterior pair, a distance is calculated as:

dij = dj; = f(hy, hy), 3)

where f(-) is the distance function. In this work, 8 dis-
tance functions: Cosine, Euclidean, Sqeuclidean, Correlation,
Chebyshev, Braycurtis, Canberra, and Cityblock are consid-
ered. Since this work considers undirected graphs, all these
distance functions are symmetric, i.e. f(h;,h;) = f(h;, h;).
After obtaining the distance between node posterior pairs, the
pairs in P are ranked accordingly, and the k closest node
posterior pairs are considered connected.

C. The Challenges of the k-closest Method

Although the k-closest method can produce valid inferences
on links in the target graph, the application of the method in
real-life attack settings faces the following three challenges.

1) It is sensitive to the selection of distance function f(-).

2) It is subjected to reliable estimation of k.

3) It needs to consider all N(N —1)/2 node posterior pairs
before making inference.

To illustrate challenge 1), we conducted experiments using
all 8 distance functions mentioned in Section II-B on three
datasets. The details of the datasets are given in Section IV and
the results are shown in Fig. 3. The metric used for evaluation
is the Area Under the Receiver Operating Characteristic Curve
(AUC). We observed that the k-closest method based on differ-
ent distance functions showed different AUC values. For each
dataset, the best-performing distance function was different.
Without interacting with the target graph, the attacker cannot
determine a distance function that performs well universally.

Regarding challenge 2), the selection of k, i.e. the number
of predicted links, directly affects the performance of the
k-closest method. If k is smaller than the ideal value, few
links are predicted. If it is larger than the ideal value, too
many false positives will render the predictions meaningless.
However, since the attacker does not have such information
on the graph, it is hard to obtain a reliable estimation of k.
As shown in the ROC curves in Fig. 6, different choices of
k, reflected by the thresholds used to plot the ROC curve,
resulted in very different performances. [17] proposed three
methods for estimating %, but these methods are based on
the attacker knowing partial graphs. [12] proposed a method
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Fig. 3. The effect of distance function on the k-closest method. AUC was
used as the metric for evaluation.

for unsupervised estimation of k based on clustering, but the
method still has relatively low precision (< 0.79).

For challenge 3), since the k-closest method functions by
finding node posterior pairs that are relatively close, distances
need to be computed for all N(NN — 1)/2 pairs before mak-
ing predictions. This complexity might be problematic when
dealing with larger graphs.

III. METHODOLOGY

Although the k-closest method is capable of making valid
deductions of graph links, the three aforementioned problems,
namely: sensitivity to distance function f(-), requirement of
pre-defined k, and the inability to make real-time predictions,
restrict its applications in real-life attacks. With the intuition
and methodologies of the k-closest method in mind, this
section proposes a more proactive attack with malicious users
to increase the practicality of graph link inference attacks.

A. Attack Setting

With everything else similar to Section II-B, we consider the
attacker establishes a small percentage of malicious nodes. For
example, 5% malicious nodes, involving approximately 0.25%
of links. This is equivalent to knowing a small sub-graph of
G. Formally, the attacker knows:

o H: the node posterior matrix.

€ V: the links between malicious nodes with
.My b, < 0.05N.

The knowledge of the sub-graph can be used to poison the
target model and train a supervised attack model, which ad-
dresses the three problems of the k-closest method mentioned
in Section II-C and enhances the practicality of link inference
attack. With malicious nodes, the attack setting and workflow
are illustrated in Fig. 2 (b).

It is worth noticing that this attack setting is realistic.
Consider the example in Section I Fig. 1, the attacker might
bribe some users to reveal their connectivity with others. The
attacker might also forge some malicious users over whom
she has full control. It is also feasible to observe some users’
connections in a recommender system [15]. It is worth noticing

. U’mi,mj
indexes M = {mq,mq,..



that this work only considers the links between the malicious
nodes because the disclosure of a link between two nodes
requires consensus from both parties, which is unattainable
from non-malicious users.

In the rest of this section, we exploit these malicious nodes
in two ways: Graph Poisoning and Supervised Attack.

B. Graph Poisoning

The main contribution of this work is to propose a graph
poisoning method named CGP. With the objective of making
the target model vulnerable to graph link inference attacks,
CGP poisons the target graph by altering the links between
malicious nodes. Since the attacker is not involved in the
training and validation of the target model, CGP works in
an offline manner, i.e. the final version of the target model is
trained after the graph poisoning. CGP relies only on a small
percentage of malicious nodes, making it practical in realistic
attack settings. Nevertheless, since the malicious nodes are
connected to other links in the target graph, CGP affects the
topology of the whole graph.

As information flows through graph links, GNN achieves
a clustering effect to some degree [18]. In general, after the
transformation by a GNN layer, the posteriors of linked nodes
are closer than those nodes that are not linked. Observing the
methodologies of the k-closest method, it is speculated that the
performance of graph link inference attacks highly depends
on how well node posteriors cluster in the feature space. If
connected nodes cluster better in the feature space, the per-
formance of distance-based link inference will likely improve.
Based on this intuition, to achieve the goal of improving the
graph link inference attack, CGP aims to amplify the clustering
effect of the target GNN model.

Consider an alteration of a link between two malicious
nodes. The objective of CGP can be summarized into the
following optimization with constraints:

A= argn}&inﬁ(A,W,X)
st.c'=c¢
IA" = Allo =2 ’
W = argrr‘lglnﬁ(A,W,X)

“4)

in which A’ is the adjacency matrix after altering the link
between the two malicious nodes. £(-) is the loss function,
c is the original prediction of the target model, and ¢’ is
the prediction of the target model after altering a link. The
constrained optimization in (4) only involves one edge and
works on a well-trained target model with parameter W.
However, solving the optimization problem in (4) remains
challenging. due to the following two reasons. 1) the graphs
are discrete in nature and 2) the feedback from the target
model is not accessible to the attacker. Due to these challenges,
gradient methods cannot be used. There have been works that
adversely affect the performance of GNN by altering the graph
structure, which was the “arg max” version of the optimization
problem in (4). The work in [19] proposed to derive the
graph perturbation by using a linearized surrogate model based
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Fig. 4. The schematic of CGP. The plot shows the posteriors of nodes in the
feature space. For nodes of the same class, connecting a node that is far from
the class centroid with a node that is close to the class centroid changes the
decision boundary and makes the cluster more compact.

on GCN. The work in [20] achieves offline optimization by
deriving the relationship between DeepWalk [11] and Singular
Value Decomposition (SVD).

CGP views the constrained optimization in (4) from a
clustering point of view. The schematic in Fig. 4 illustrates
the intuition behind CGP. For conciseness, let us consider the
binary classification of graph nodes. After the transformation
of GNN, connected nodes that belong to the same class form
a cluster. On the schematic, one red dot goes beyond the
decision boundary, which will likely cause wrong predictions
when the attacker performs graph link inference attacks. CGP
improves the clustering of node posteriors and the decision
boundaries by adding a link between the node far from the
class centroid (the further node) and the node close to the
class centroid (the closer node). Indeed, the closer node will
be moved further from the class centroid. However, the further
away node, which is more significant in the determination of
the decision boundary, is moved closer to the class centroid.

We now illustrate the intuition of CGP mathematically. In
a simplified setting, where there are only two nodes 7 and j
(i # j). According to the propagation rule of GCN layer in
(1), the posterior h; of node ¢ can be written as:

N—-1
h; = Aij X;
— Vdid;
A j#0 (5)
o X; 7Az',j = Aj,'i = 0
B {(Xi +x5)/2 A=A =1

Since CGP operates on well-optimized W, we assume con-
stant W before and after the operation on A, therefore W
in (1) is omitted. Here x; and x; are the node features of
node 7 and j. Take the Euclidean distance as an example.
Assume nodes ¢ and j are not connected originally. The



original distance between h; and h; is calculated as:
f (b, hy) = [[xi = %5l (6)

After linking node ¢ and j, the distance between the new
posterior h; and the original posterior h; becomes:

f(hihy) =6 +%5)/2 = xlla = [lxi = %5]l2/2 ()

Equations (6) and (7) show that by connecting node ¢ (a node
close to the decision boundary) with node j (a node close to
the class centroid but far away from the decision boundary),
k% moves to the direction of h;, which is closer to the class
centroid. This potentially improves the clustering effect of the
target model, thus minimizing £(A, W, X) in (4).

Apart from adding links, another intuitive way to improve
the clustering effect of node posteriors is to remove links
between malicious nodes from different clusters. In CGP,
the links between each malicious node and other malicious
nodes belonging to different clusters are removed. This link
removal brings another benefit. Since both the addition and the
removal of links are used, it is possible to maintain a relatively
stable node degree. This allows for future work on countering
malicious node detection.

The detailed algorithm is given in Algorithm 1. The at-
tacker knows the node posteriors h;,¢ = 1,2,..., N. CGP
begins by clustering all h; into C' clusters using the k-means
clustering. All node posteriors belonging to the cluster c are
averaged to obtain cluster centroid o. and assigned class c.

Algorithm 1: CGP
input : Node posteriors H, number of node categories
C, indices of malicious nodes M, adjacency
matrix A, threshold d
output: Altered adjacency matrix A’

1 C-Clustering to find node posterior centroids
{017 09, ... Oc};

2 A A;
3 for node m € M do
4 ¢+ arg min|/h,, — o.||2;
5 Mpeame ; nodes most approximate to o;
6 Mdiff «— M\Msame;
7 | for node n € M\m do
8 if node n € M?**™¢ and
|hy, — oc]|2 < min(||h,, — 0c||2,d) then
9 Ain’n — 1
10 A’n’m «— 1;
1 if node m € M%/f then
12 L Al <0
13 A0

CGP then iterates over all malicious nodes. In each iteration,
the malicious node m belonging to class ¢ is considered.
Malicious nodes belonging to the same class have indexes
€ M>*¥me  whereas others have indexes € M¥ff For

malicious node n (n # m), if n € M**™¢_ and h,, is closer to
the class centroid o, than h,,, a link is added between nodes
m and n. If n € M%f/ the link is removed.

It is worth noticing that while the discussion in this section
focuses on one malicious node posterior pair, CGP can affect
the whole graph. Although the links between the majority of
nodes remain inaccessible to the attacker, they are likely to
be linked to some of the malicious nodes. By moving one
malicious node closer to its class centroid, the “hyper-node”
formed by itself and other benign nodes move as well.

C. Supervised Attack

The information from the malicious nodes forms a dataset
D = {((hm;, hm;), Vm;m;)}, mi,m; € M that can be used
to train supervised attack models. To overcome the k-closest
method’s sensitivity to distance functions, the model first
calculates all 8 distance functions (Section II-B) of the pair
(hyn,, Dy, ). These metrics go through a multi-layer perception
to make predictions p.

This attack model structure solves the three problems of the
k-closest method mentioned in Section II-C as follows: First,
the model structure takes into account several distance func-
tions, therefore alleviating sensitivity to distance functions.
Second, the supervised nature of the attack model means it
does not rely on an estimated k of the target graph. Third, after
training, the supervised network makes real-time inferences,
without the need to consider N(N — 1)/2 node pairs.

IV. EXPERIMENTATION
A. Configuration

The dataset used for evaluation were Cora [21], CiteSeer
[2], and polblogs [3]. The target GNN model was set to have
a (node features size x8) GCN layer with ReLU activation and
an (8xC) linear layer. To train the target model, the cross-
entropy loss and the Adam optimizer [22] were used. The
learning rate was fixed at 0.02, and all the models were trained
for 50 epochs.

To justify the choice of target GNN structure, experiments
were conducted on target models with different numbers of
GCN layers. Results are shown in Table IV in Section IV-F.
We observed no significant difference in attack performance
under different model structures. Therefore for the rest of
this section, we only show the experimental results on the
aforementioned target model structure.

The malicious nodes were randomly chosen 5% of the nodes
in the target graph, containing approximately 0.25% of all
links. To reduce randomness, all experiments were conducted
over 10 runs. Notice that although the percentage of malicious
nodes was 5% in the majority of discussions, Section IV-E
shows 1% of malicious nodes produced decent link inference
performance.

The supervised attack model first calculated the 8 distance
metrics mentioned in Section II-B, followed by an (8x32)
linear layer with ReLU activation and a dropout layer with a
rate of 0.5, a (32x32) linear layer with ReLU activation and
a dropout layer with a rate of 0.5, and a (32x2) linear layer.
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Fig. 5. Linked node pairs’ posterior distance distribution, before and after
applying CGP. After CGP, we still counted the originally linked nodes,
therefore the number of counted nodes in the histograms remained the same.

The cross-entropy loss was adopted, and the optimizer was
the Adam [22] with a learning rate of 0.0005. The model was
trained for 100 epochs.

B. Effect of CGP on the Target Model

In the feature space, we observed the linked node pairs’
distance distributions, before and after applying CGP. The
distance distributions are illustrated in Fig. 5. Note that we still
count the originally linked nodes for the poisoned histogram,
so the total number of linked nodes, i.e. the integration of
the distribution, does not change before and after CGP. In
general, the mean of the histograms after applying CGP moved
towards 0, with reduced variance, indicating more compact
node posterior clusters. Since all attack methods mentioned in
this work predict links based on the distances between node
posteriors, Fig. 5 intuitively shows how CGP might benefit
link inference.

C. Effect of CGP on the k-closest Attack

For this section, we tested the effect of CGP on the k-
closest method in a realistic link inference attack setting.
The target model was first trained. The node posteriors h;
were recorded. For the k-closest method, we followed the
procedures introduced in Section II-B. For the combination
of CGP and the k-closest method, 5% of nodes with index
were first sampled as malicious nodes. CGP followed the
implementation in Algorithm 1. Afterward, the target GNN
was trained as usual and the k-closest method was applied.
AUC was adopted for evaluation. The metric is particularly
suitable for evaluating the k-closest method’s performance
since it removes the bias caused by manually choosing k.

Table I shows the AUC of k-closest without and with CGP,
where the standard deviations are shown in the parenthesis.
A general performance improvement was observed when ap-
plying the k-closest method after CGP, especially on Cora
and CiteSeer. On Cora, except for a 0.001 decrease when
using the Correlation distance, the average AUC improved
from 0.01 to 0.05. On CiteSeer, we observed significant im-
provement in AUC under all distance functions. On polblogs,
the introduction of CGP led to mixed results. This in a way

agreed with the distance distribution shift observed in Fig. 5,
where the original posterior distribution of the polblogs dataset
already had a mean close to zero. This may explain why the
introduction of CGP did not result in significant improvements.
Nevertheless, the results in Table I show evidence that CGP
can alter links between malicious users to make the target
model more vulnerable to graph link inference attacks.

The Receiver Operating Characteristic curve (ROC) curves
of the k-closest method without and with CGP (marked with
orange frame) are shown in Fig. 6. Desirable improvement on
the left portion of the ROC curve was observed after applying
CGP under certain distance functions. This illustrated another
benefit of applying CGP. When a lower k is chosen, the
original k-closest method makes relatively more false positive
inference, i.e. predicting links that do not exist. For attacks on
sensitive information, such results could be misleading. After
adding CGP, the false positive rate is lowered in the low &
setting.

D. CGP and the Supervised Attack

One of the benefits of introducing malicious nodes into the
target graph is the capability of using ground-truth links to
train supervised attack models. In this work, the supervised
attack was conducted and compared with the k-closest method.
The supervised attack was also combined with CGP to further
improve link inference accuracy.

Similar to Section IV-C, the target model was first trained to
obtain node posteriors H. Afterward, 5% nodes were randomly
selected to form a set of malicious nodes. The target model
was trained for another round to obtain the poisoned H. The
supervised attack was based on the node posteriors h;, with
posterior pairs and link existence each acting as data and label
to train the attack model.

For supervised attacks, precision and recall were used as
metrics of evaluation. To establish a baseline, they were
also calculated for the k-closest method. To select £ for the
unsupervised attack, we use the method in [12]: a K-means
clustering was conducted on H, with K set to 2. The number
of data points in the smaller cluster was used as the k& for
the k-closest method. Except for the unsupervised k-closest
method, all precisions and recalls were averaged in 10 runs.

Table II shows the mean precision, recall, and F-1 of
all attacks. We observed two phenomena. First, the F-1 of
the supervised attack improved up to 0.15 compared to the
k-closest method. This is expected since extra information
(malicious nodes) was available to the supervised attack.
Second, CGP improved both the k-closest method and the
supervised attack. On top of the two observations mentioned
above, it is worth noticing that the graph link inference attack
based on the k-closest method has decent recalls but low
precisions. This indicates the k-closest method may produce
many false link predictions. On the other hand, supervised
attacks have significantly improved precision. Once a link is
predicted by the supervised attack, the confidence level is
higher, thus posing a greater privacy risk to key sensitive user
relationships.



TABLE 1

k-CLOSEST AUC (p(o)) WITHOUT AND WITH CGP

Cosine Euclidean Sqeuclidea  Correlation ~ Chebyshev Braycurtis Canberra Cityblock
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k-closest 0.898 0.675 0.675 0.904 0.654 0.769 0.839 0.695
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k-closest 0.614 0.594 0.594 0.784 0.549 0.788 0.706 0.520
CGP + k-closest | 0.679(.020)  0.556(.025) 0.556(.025) 0.803(.024) 0.538(.018) 0.781(.016)  0.715(.023) 0.524(.016)
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Fig. 6. The ROC curves of the k-closest method, without (upper row) and with CGP (lower row with orange frame).
TABLE II
PRECISION AND RECALL (u(0)) OF GRAPH LINK INFERENCE ATTACKS
Cora CiteSeer polblogs
precision recall F-1 precision recall F-1 precision recall F-1
k-closest 0.732 0.901 0.808 0.788 0.932 0.854 0.647 0.943 0.767
CGP + k-closest 0.743(.013)  0.942(.001) 0.831 | 0.801(.011)  0.962(.004) 0.874 | 0.646(.017) 0.972(.012) 0.776
supervised 0.995(.002)  0.882(.030) 0.935 | 0.996(.001) 0.841(.027) 0.912 | 0.967(.015) 0.911(.014) 0.938
CGP + supervised | 0.996(.003) 0.911(.032) 0.952 | 0.995(.002) 0.923(.021) 0.958 | 0.958(.008) 0.947(.010)  0.952

E. Percentage of Malicious Nodes

To validate the effect of malicious node percentage on graph
link inference attack performance, we conducted CGP and su-
pervised attacks with malicious node percentage 1%, 2%, 5%,
and 10%. Since the k-closest attack does not rely on malicious
nodes, we choose the supervised attack for the evaluation of
the malicious node percentage’s effect. Table III shows the
attack performance on polblogs. In general, increasing the
malicious node percentage resulted in improved performance.
However, more than 5%, e.g. 10%, of malicious nodes did

not bring significant improvements. It is also not realistic for
attackers to establish a large percentage of malicious nodes,
therefore 5% was used in this work. Smaller percentages, e.g.
1% or 2%, still outperform the k-closest method by 0.15 in F-
1. As such, we conclude that fewer than 5% malicious nodes
are already effective in real-life attacks.

F. Target Model Structure

To validate whether the structure of the target model signif-
icantly affects the attack performance, we conducted CGP and



TABLE III
CGP + SUPERVISED ATTACK PERFORMANCE ON POLBLOGS WITH
DIFFERENT PERCENTAGES OF MALICIOUS NODES

percentage | precision  recall F-1

1% 0.955 0.894  0.923

2% 0.967 0910 0.938

5% 0.960 0.945 0.952

10% 0.966 0.952  0.959
TABLE IV

CGP + SUPERVISED ATTACK PERFORMANCE WHEN THE TARGET MODEL
HAS DIFFERENT NUMBER OF GCN LAYERS

Cora  CiteSeer  polblogs

one GCN layer
precision | 0.996 0.995 0.958
recall 0.906 0.921 0.951
F-1 0.949 0.957 0.954

two GCN layers
precision | 0.989 0.994 0.964
recall 0.912 0.920 0.921
F-1 0.949 0.956 0.942

three GCN layers
precision | 0.992 0.994 0.949
recall 0.922 0.917 0.933
F-1 0.956 0.954 0.941

the supervised attack on the target GNN model with 1, 2, and
3 GCN layers. The precision and recall of the attacks on the
polblogs dataset are shown in Table IV. Significant changes in
attack performance were not observed, therefore 1 GCN layer
was adopted in this work.

V. CONCLUSION

This paper studies the risks of link leakage caused by
malicious nodes in GNN. Without the malicious users, the at-
tacker has to rely on distance-based unsupervised attacks. Such
attacks have limitations including 1) being highly sensitive
to the selection of distance functions, 2) requiring accurately
estimated decision threshold, and 3) needing to consider all
node pair combinations before making decisions. In this paper,
with the introduction of malicious users, the practicality of link
inference is greatly improved. The proposed method, CGP,
only needs less than 5% malicious nodes, i.e. approximately
0.25% of links to become effective in changing the topology
of all target GNN posteriors. Combined with the supervised
attack enabled by ground-truth links between malicious nodes,
the method proposed in this work achieved F-1> 0.95 on Cora,
CiteSeer, and polblogs datasets. This study emphasizes the
threat from malicious users in graph link inference attacks,
it also underscores the vital importance of detecting and
addressing malicious users in GNN applications.
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