Causal Inference: a Tutorial

Haozhe Tian Imperial College London haozhe.tian21@imperial.ac.uk https://haozhetian.netlify.app/

Table of Content

I. Causality Matters

II. Structural Causal Models (SCMs)

III. Causal Discovery

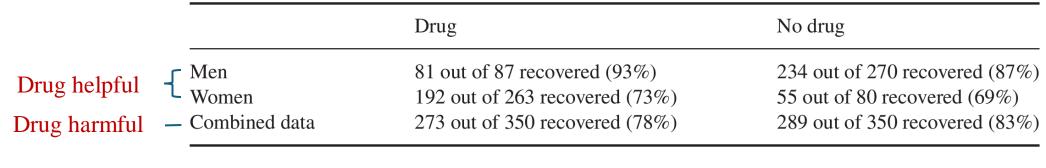
IV.Interventions

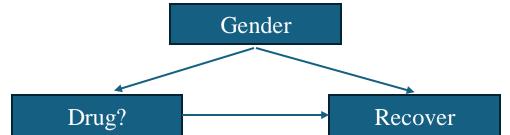
A. Backdoor Criterion

- B. Practical Implementation (Propensity Score)
- V. Counterfactuals

Benefit of knowing a covariate

Table 1.1 Results of a study into a new drug, with gender being taken into account



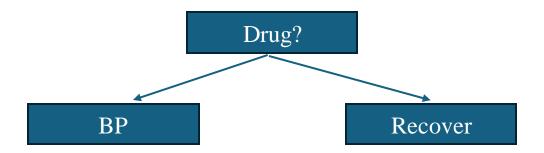


Women are more likely to take the drug, but have lower recovery rate

Should draw the conclusion from data segregated by gender.

The toxic effect of knowing a covariate

Table 1.2	Results of a study into a new drug, with post	treatment blood pressure taken into account
	No drug	Drug
Low BP	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High BP	192 out of 263 recovered (739	%) 55 out of 80 recovered (69%)
Combined	data 273 out of 350 recovered (789	%) 289 out of 350 recovered (83%)



Drug reduces the number of High BP people

??Should draw the conclusion from data segregated by BP?? NO!

Structural Causal Models

SCM (Basketball Performance Based on Height and Sex)

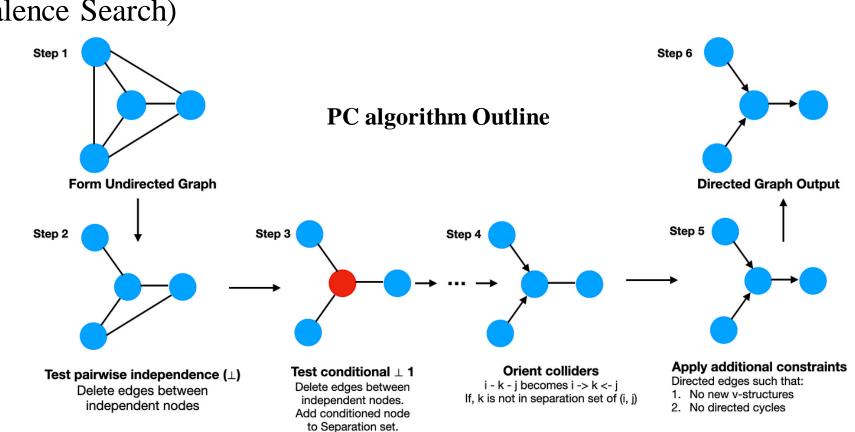
$$V = \{\text{Height, Sex, Performance}\}, \quad U = \{U_1, U_2, U_3\}, \quad F = \{f1, f2\}$$

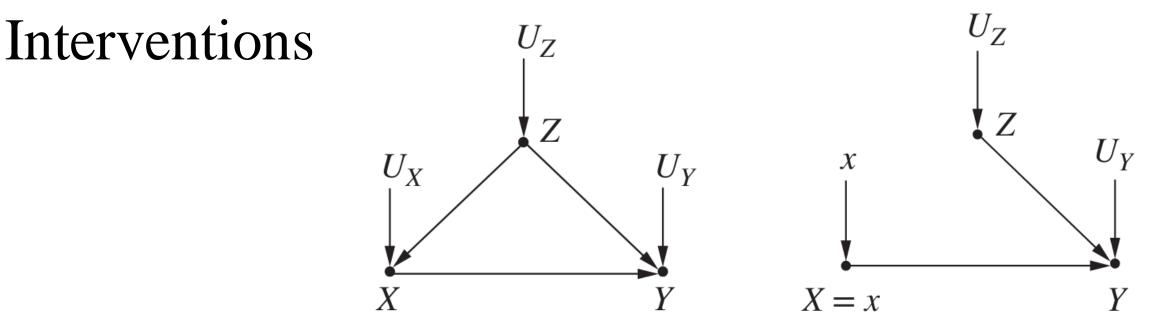
Sex = U_1
Height = $f_1(\text{Sex}, U_2)$
Performance = $f_2(\text{Height, Sex, }U_3)$
 $V: \text{ endogenous variable}$
 $U: \text{ exogenous variable}$
 $U = \{U_1, U_2, U_3\}, \quad F = \{f1, f2\}$
Binomial?
 $U_1 \qquad U_2$
 $\downarrow \qquad \downarrow$
Sex \longrightarrow Height
 U_3
Performance

Performance

Causal Discovery

- Constraint-based Methods
 - PC algorithm
- Score-based Methods
 - GES (Greedy Equivalence Search)
- Deep Learning
 - CausalGAN
- etc.





Graph before and after intervention. X is the application of drug, Y is whether the person is cured, and Z is the gender.

- Intervention: P(Y=y | X=1) vs. P(Y=y | do(X=1))
- Want to know: P(Y = 1 | do(X = 1)) P(Y = 1 | do(X = 0))

• Adjustment Formula: $P(Y = y | do(X = x)) = \sum P(Y = y | X = x, Z = z)P(Z = z)$

Backdoor Criterion

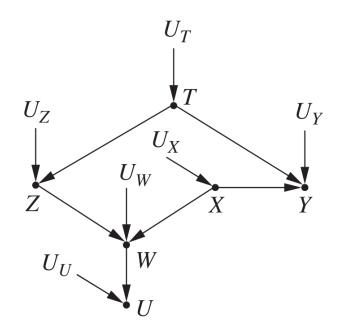
٠

- Block all spurious paths
- Leave direct paths
- Create no new spurious paths

Interventions: Backdoor Criterion

Backdoor Criterion

- Block all spurious paths between X and Y
- Leave direct paths from X to Y
- Create no new spurious paths



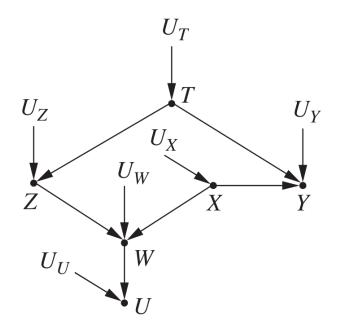
P(Y=y | do(X=1)) = P(y | x)

 $P(Z) = P(Z \mid X) \text{ <u>but</u> } P(Z \mid W) \neq P(Z \mid X, W)$

Interventions: Backdoor Criterion

Backdoor Criterion

- Block all spurious paths between X and Y
- Leave direct paths from X to Y
- Create no new spurious paths



P(
$$Y=y \mid do(X=1), W=w$$
)?
creates spurious path X \rightarrow W \leftarrow Z \leftrightarrow T \rightarrow Y

Block spurious path by <u>conditioning on T</u>

$$P(Y = y | do(X = x), W = w) = \sum_{t} P(Y = y | X = x, W = w, T = t) P(T = t | X = x, W = w)$$

Interventions: Practical estimation

• Adjustment Formula: $P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$

Too few data per strata when there are too many covariates

Inverse Probability Weighing:
* Propensity Score: P(X=x | Z=z) ≈ g(x, z)

$$P(y|do(x)) = \sum_{z} P(Y = y|X = x, Z = z)P(Z = z)$$

=
$$\sum_{z} \frac{P(Y = y|X = x, Z = z)P(X = x|Z = z)P(Z = z)}{P(X = x|Z = z)}$$

=
$$\sum_{z} \frac{P(Y = y, X = x, Z = z)}{P(X = x|Z = z)}$$

Counterfactuals

• Intervention: E(Y | do(X=x))

• Counterfactual:

$$E(Y_{X=1} | X=0, Y_{X=0}=y)$$

New world

Original World

$$X = U_1 \quad Z = aX + U_2, Y = bZ$$

$$\bigcup_{X \in A} U_2 \quad \bigcup_{X \in A} U_2 \quad \bigcup_{X \in A} U_2 \quad \bigcup_{X \in A} U_2$$
(College) (Skill) (Salary)

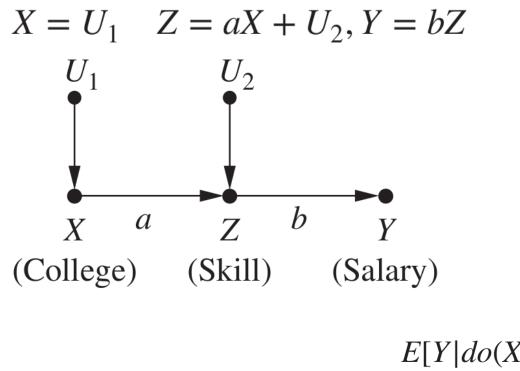
• $E(Y \mid do(X=1), Z=1) = E(Y \mid do(X=0), Z=1)$ For those who have skill level 1, no matter obtained in college or not U_1 U_2 U_2 U_2 U_2 U_2 U_3 U_4 U_2 U_4 U_2 U_4 U_4 U_2 U_4 U_5 U_4 U_5 U_4 U_5 U_5 U_4 U_5 U_5 U_5

•
$$E(Y_{X=1} | Z=1) \neq E(Y_{X=0} | Z=1)$$

What if ?

For those who have skill level 1, what if they went to college? (Z will be bigger)

Counterfactuals



- Three steps in computing counterfactuals: **1. Abduction:** solve for U_i **2. Action:** modify X
- **3. Prediction:** predict Y_X

 $E[Y_1|Z = 1] = (a+1)b$

 $E[Y_0|Z = 1] = b$

Abduction: Z=1, thus U₁=X=0, U₂=1.
 Action: X=1
 Prediction: Y=(a+1)b

```
E[Y|do(X = 1), Z = 1] = b
E[Y|do(X = 0), Z = 1] = b
```

Counterfactuals: Practical Estimation

We have a powerlifting program. Let X=1 represent taking the program and Y represent strength after two weeks. We find: E[Y|X=1] > E[Y|X=0]

X=1 people might be more interested in training to begin with. What we are interested in is actually: $E[Y_1/X=1] - E[Y_0/X=1]$ * Model parameters unknown* Time travel not allowed

 $E[Y_0|X=1]$ can be estimated if we know some covariates.

$$P(Y_x = y | X = x')$$

= $\sum_{z} P(Y = y | X = x, Z = z) P(Z = z | X = x')$

Thus
$$E[Y_0|X=1]$$

= $\sum_{z} E[Y|X=0, Z=z]P(Z=z|X=1)$

References

- Pearl J, Glymour M, Jewell NP. Causal inference in statistics: A primer. John Wiley & Sons; 2016 Jan 25.
- Glymour C. Causal discovery. Towards Data Science [Internet]. 2020 Jun 12 [cited 2024 May 31]. Available from: https://towardsdatascience.com/causal-discovery-6858f9af6dcb.