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1. Overview



The Gloomy Comment

Post

Yann LeCun m

The impact of RL has been exactly as small as | had predicted.
The impact of Self-Supervised Learning has been even bigger that | had
predicted.
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The RL Paradigm

s: state
R: reward

a. action

Most likely the agent does not know the inner
working of the environment, i.e. model-free RL
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An Example: Pac-Man

a: {1, |, —, —}
sy: {lg 1y 1oy L3}
SZ: {xp,yp;xglinZ"'}

R;: {+1, 0, -100}
R,: {0, -100}

The choice of state and reward are fexible
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2. Methodology



How RL Works

At state s, choose action a;, that maximizes the expected
cumulative reward. Formally:
a, < argmax,Q(sy, a)
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RL Classification

Planning =————— Model Predictive Control, Dynamic Programming, etc
Monte-Carlo
Tabular Solution Methods
Model-free Temporal Diff (TD)

RL Q—Learning] etc.

Approximated Solution Methods[paN] etc

; Policy Gradient Methods
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Tabular Solution Method
Example: Q-Learning



Q-Learning

Find a; that maximizes the expected cumulative reward.
a, < argmax,Q(sy, a)

Q(sk, ax) = E[Rg + YRyy1 + V*Ryyn + -]
= Ri+VE[Rx + YRy42 + -]

Assume a;, at s leads ‘

to determined sy, 44
= Ry + z P(a|sk+1)Q(Sk+1, Q)
a

10 2. Methodology



Q-Learning

S
1. Act=>¢-greedy: ‘
a = argmax Q(s,a;) => Exploitation with 1 — & possibility \
{ a;=—1/+1 ab
act randomly => EXxploration with & possibility P
2. Update: i
!/
At state s, take a, update Q(s, a): \ S
Q(s,a) <« Q(s,a) + lr[{? +y max Q(s’, a”) — Q(s,a)] 5 \é)
a

Bootstrapped estimation of Q (s, a)
Based on greedy assumption for future states
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1. Act:

Start Point a = argmax Q(s, a;),
l a;j=—1/+1
R=-10 R =+10 If Q(s,—1) = Q(s, +1), act randomly
R=0 2. Update:

At state s, take a, update Q (s, a):
Q(s,a) < Q(s,a) + Ir[R + ymax Q(s’,a’) — Q(s, a)]

1. Act: 2. Update:
1 o+ 1 +1
0 -10 | 0 | Policy: 0 -10 0 Update:
| S =0a=+1 0(0,+1) « 0
1 0 0 §=1R =0 1 0 0
2 0 | +10 2 0 +10
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1. Act:

Start Point a = a'r'gmax Q(S, al)’
l ai=—1/+1
R =-10 R =+10

If Q(s,—1) = Q(s,+1), act randomly

R=0 2. Update:

At state s, take a, update Q (s, a):
Q(s,a) < Q(s,a) + a[R + max Q(s’,a’) — Q(s, a)]

1. Act: 2. Update:
1 +1 1 o+
0O -10 O Policy: o | -10 o | Update:
1 S=1a= -1 0(1,—-1) « 0
1 0 0 $=0R =0 1 0 +10

2 0] +10 2 0 +10
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1. Act:

Start Point a = argmax Q(S, ai)’
l ai=—1/+1

R =_10 R = +10 If Q(s,—1) = Q(s,+1), act randomly
R =0 2. Update:

At state s, take a, update Q (s, a):
Q(s,a) < Q(s,a) + a[R + max Q(s’,a’) — Q(s, a)]
1. Act: 2. Update:

O -10 © Policy: o -10 o Update:

S=1a=+1 0(1,+1) « +10
. 0 1 0 +10
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Q-Learning

Q-learning: An off-policy TD control algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0

Repeat (for each episode):
Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., e-greedy) |
(Take action A, observe R, S’ )
Q(S,A) + Q(S, A) + a[R +ymax, Q(S',a) — Q(S, A)]

S+ 5

until S is terminal

1. Act
2. Update
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Approximated Solution Method
Example: DOQN



DQN
 Short for Deep Q-Network

* Proposed by Minh et al. in “Playing Atari with Deep

Reinforcement Learning”
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Figures from https://gymnasium.farama.org/environments/atari/complete_list/



DQN

] |
“JA3tre Y =
—_ L__i_ rrrrrr —_-_:: ::. —_
Game Screen Convolutional Convolutional Convolutional fully connected Output
Layer 1 Layer 2 Layer 3 layer layer

» Use NN to approximate Qq (s, a).
 Suitable for large state and action space.

 Ability to generalize.
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DQN

* To update 8 in the NN
» Use NN to approximate Q4 (s, a):

L =3 (R +maxQy(s',a) — Qo(s, @)
\ a )

|
Predicted Q value
.detach()
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DQN

* Seems “‘straight-forward”:
Deeper -> More Powerful?
* In fact, the paper was not the first to propose deep
networks for approximating Q(s, a).

« The main contribution is the Replay Memory.
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DQN: Replay Memory

 Save experience (s,a, R,s") in the Replay Buffer.
* In each iteration, sample a batch from the Replay Buffer.
 Benefits for doing this:

 Breaks Correlation in Successive Samples

* Promotes Sample Efficiency

* Facilitates Learning from Rare Events

* Improves Gradient Descent Stability (by having a batch).
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3. Summary



Summary

Reinforcement Learning

RL learns from trial and error through interaction with an
environment

Compared with Other ML Paradigm

RL generates a sequence of decision each depending on previous
actions; Data distribution changes according to the agent’s action.

Compared with Planning (DP, MPC)
No system model!!
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Back to the Gloomy Comment

‘-i"_ Yann LeCun
q
&b

A minimal dose of RL is inevitable.

But the purpose of RL research should be to find ways to minimize its
use because it's so sample inefficient.

My vision is to use SSL-trained world models & intrinsic objectives
(hopefully differentiable), and planning.
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If you are still interested

Sutton&Barto Book

Avalilable free online: https://www.andrew.cmu.edu/course/10-
703/textbook/BartoSutton.pdf

David Silver UCL Lectures
Recording free on YouTube: https://www.youtube.com/watch?v=2pWv7GOvuf0
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https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0

Thank you

Haozhe Tian,
Research Postgraduate,
Dyson School of Design Engineering,

Imperial College London.
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