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1. Overview



The Gloomy Comment
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The RL Paradigm
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Agent

Environment

𝑎: action
𝑠: state

𝑅: reward

Most likely the agent does not know the inner 

working of the environment, i.e. model-free RL



An Example：Pac-Man
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𝑎: {↑, ↓, ←, →}

s1: {I0, I-1, I-2, I-3}

𝑅1: {+1, 0, -100}

s2: {𝑥𝑝, 𝑦𝑝, 𝑥𝑔1 , 𝑦𝑔2…}

𝑅2: {0, -100}
The choice of state and reward are fexible



2. Methodology



How RL Works
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Reinforcement Learning

At state 𝑠𝑘, choose action 𝑎𝑘, that maximizes the expected 

cumulative reward. Formally:

𝑎𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐐(𝒔𝒌, 𝒂)



RL Classification
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Model-free 

RL

Tabular Solution Methods

Approximated Solution Methods

Monte-Carlo

Temporal Diff (TD)

Policy Gradient Methods

Q-Learning, etc.

DQN, etc.

Planning Model Predictive Control, Dynamic Programming, etc



Tabular Solution Method
Example: Q-Learning



Q-Learning
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Q 𝑠𝑘, 𝑎𝑘 = 𝔼 𝑅𝑘 + 𝛾𝑅𝑘+1 + 𝛾2𝑅𝑘+2 + ⋯

= 𝑅𝑘+𝛾𝔼 𝑅𝑘 + 𝛾𝑅𝑘+2 + ⋯

= 𝑅𝑘 + ෍

𝑎

𝑃(𝑎 𝑠𝑘+1 𝑄(𝑠𝑘+1, 𝑎)

Assume 𝑎𝑘 at 𝑠𝑘 leads 

to determined 𝑠𝑘+1

Reinforcement Learning

Find 𝑎𝑘 that maximizes the expected cumulative reward.

𝑎𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐐(𝒔𝒌, 𝒂)



Q-Learning
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1. Act=>ε-greedy:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖)    => Exploitation with 1 − 𝜀 possibility 

        act randomly                  => Exploration with 𝜀 possibility 

2. Update:

    At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):
 

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝑙𝑟[𝑅 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]      

    Bootstrapped estimation of 𝑄(𝑠, 𝑎)
Based on greedy assumption for future states 

s

a

s′

max
𝑎′

𝑄 𝑠′, 𝑎′

𝑅

a′



12 1. Background
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1. Act:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

    If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

    At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝑙𝑟[𝑅 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]      

    

Q(s, a)

Actions

-1 +1
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ta

te
s

0 -10 0

1 0 0

2 0 +10

Update:

𝑄(0, +1) ← 0
Policy:

𝑆 =  0, 𝑎 =  +1
𝑆’ =  1, 𝑅 =  0

Initialized to be 0

1. Act: 2. Update:
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Update:

𝑄(1, −1) ← 0
Policy:

𝑆 =  1, 𝑎 =  −1
𝑆’ =  0, 𝑅 =  0

0 1 2

𝑅 = 0

𝑅 = +10𝑅 = −10

Start Point

1. Act:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

    If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

    At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 + max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

1. Act: 2. Update:
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Update:

𝑄(1, +1) ← +10
Policy:

𝑆 =  1, 𝑎 =  +1
𝑆’ =  2, 𝑅 =  0

0 1 2

𝑅 = 0

𝑅 = +10𝑅 = −10

Start Point

1. Act:

𝑎 = argmax
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

    If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

    At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 + max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

1. Act: 2. Update:



Q-Learning
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1. Act

2. Update



Approximated Solution Method
Example: DQN



DQN
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• Short for Deep Q-Network

• Proposed by Minh et al. in “Playing Atari with Deep 

Reinforcement Learning”

Figures from https://gymnasium.farama.org/environments/atari/complete_list/



DQN
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• Use NN to approximate 𝑄𝜃(𝑠, 𝑎).

• Suitable for large state and action space.

• Ability to generalize.



DQN
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• To update 𝜃 in the NN

• Use NN to approximate 𝑄𝜃 𝑠, 𝑎 :

        𝐿 =
1

2
(𝑅 + max

𝑎
𝑄𝜃 𝑠′, 𝑎 − 𝑄𝜃 𝑠, 𝑎 )

Predicted Q value

.detach()



DQN
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• Seems “straight-forward”:

        Deeper -> More Powerful?

• In fact, the paper was not the first to propose deep 

networks for approximating 𝑄(𝑠, 𝑎).

• The main contribution is the Replay Memory.



DQN: Replay Memory
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• Save experience 𝑠, 𝑎, 𝑅, 𝑠′  in the Replay Buffer.

• In each iteration, sample a batch from the Replay Buffer.

• Benefits for doing this:

• Breaks Correlation in Successive Samples

• Promotes Sample Efficiency

• Facilitates Learning from Rare Events

• Improves Gradient Descent Stability (by having a batch).



3. Summary



Summary

Reinforcement Learning

RL learns from trial and error through interaction with an 
environment

23 3. Summary

Compared with Other ML Paradigm

RL generates a sequence of decision each depending on previous 
actions; Data distribution changes according to the agent’s action.

Compared with Planning (DP, MPC)

No system model!!



Back to the Gloomy Comment
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If you are still interested

Sutton&Barto Book

Available free online: https://www.andrew.cmu.edu/course/10-
703/textbook/BartoSutton.pdf

25 3. Summary

David Silver UCL Lectures

Recording free on YouTube: https://www.youtube.com/watch?v=2pWv7GOvuf0

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0


Thank you
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