
A Playful Dive into the World of RL

Haozhe Tian,

Research Postgraduate,

Dyson School of Design Engineering,

Imperial College London.

1. Overview

The Gloomy Comment

3 1. Overview

The RL Paradigm

4 1. Overview

Agent

Environment

𝑎: action
𝑠: state

𝑅: reward

Most likely the agent does not know the inner

working of the environment, i.e. model-free RL

An Example：Pac-Man

5 1. Overview

𝑎: {↑, ↓, ←, →}

s1: {I0, I-1, I-2, I-3}

𝑅1: {+1, 0, -100}

s2: {𝑥𝑝, 𝑦𝑝, 𝑥𝑔1 , 𝑦𝑔2…}

𝑅2: {0, -100}
The choice of state and reward are fexible

2. Methodology

How RL Works

7 2. Methodology

Reinforcement Learning

At state 𝑠𝑘, choose action 𝑎𝑘, that maximizes the expected

cumulative reward. Formally:

𝑎𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐐(𝒔𝒌, 𝒂)

RL Classification

8 2. Methodology

Model-free

RL

Tabular Solution Methods

Approximated Solution Methods

Monte-Carlo

Temporal Diff (TD)

Policy Gradient Methods

Q-Learning, etc.

DQN, etc.

Planning Model Predictive Control, Dynamic Programming, etc

Tabular Solution Method
Example: Q-Learning

Q-Learning

10 2. Methodology

Q 𝑠𝑘, 𝑎𝑘 = 𝔼 𝑅𝑘 + 𝛾𝑅𝑘+1 + 𝛾2𝑅𝑘+2 + ⋯

= 𝑅𝑘+𝛾𝔼 𝑅𝑘 + 𝛾𝑅𝑘+2 + ⋯

= 𝑅𝑘 + ෍

𝑎

𝑃(𝑎 𝑠𝑘+1 𝑄(𝑠𝑘+1, 𝑎)

Assume 𝑎𝑘 at 𝑠𝑘 leads

to determined 𝑠𝑘+1

Reinforcement Learning

Find 𝑎𝑘 that maximizes the expected cumulative reward.

𝑎𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝐐(𝒔𝒌, 𝒂)

Q-Learning

11 2. Methodology

1. Act=>ε-greedy:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖) => Exploitation with 1 − 𝜀 possibility

 act randomly => Exploration with 𝜀 possibility

2. Update:

 At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝑙𝑟[𝑅 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

 Bootstrapped estimation of 𝑄(𝑠, 𝑎)
Based on greedy assumption for future states

s

a

s′

max
𝑎′

𝑄 𝑠′, 𝑎′

𝑅

a′

12 1. Background

0 1 2

𝑅 = 0

𝑅 = +10𝑅 = −10

Start Point

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 0

2 0 +10

1. Act:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

 If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

 At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝑙𝑟[𝑅 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 0

2 0 +10

Update:

𝑄(0, +1) ← 0
Policy:

𝑆 = 0, 𝑎 = +1
𝑆’ = 1, 𝑅 = 0

Initialized to be 0

1. Act: 2. Update:

13 1. Background

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 0

2 0 +10

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 +10

2 0 +10

Update:

𝑄(1, −1) ← 0
Policy:

𝑆 = 1, 𝑎 = −1
𝑆’ = 0, 𝑅 = 0

0 1 2

𝑅 = 0

𝑅 = +10𝑅 = −10

Start Point

1. Act:

𝑎 = 𝑎𝑟𝑔max
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

 If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

 At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 + max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

1. Act: 2. Update:

14 1. Background

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 0

2 0 +10

Q(s, a)

Actions

-1 +1

S
ta

te
s

0 -10 0

1 0 +10

2 0 +10

Update:

𝑄(1, +1) ← +10
Policy:

𝑆 = 1, 𝑎 = +1
𝑆’ = 2, 𝑅 = 0

0 1 2

𝑅 = 0

𝑅 = +10𝑅 = −10

Start Point

1. Act:

𝑎 = argmax
𝑎𝑖=−1/+1

𝑄(𝑠, 𝑎𝑖),

 If 𝑄 𝑠, −1 = 𝑄(𝑠, +1), act randomly

2. Update:

 At state 𝑠, take 𝑎, update 𝑄(𝑠, 𝑎):

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 + max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

1. Act: 2. Update:

Q-Learning

15 2. Methodology

1. Act

2. Update

Approximated Solution Method
Example: DQN

DQN

17 2. Methodology

• Short for Deep Q-Network

• Proposed by Minh et al. in “Playing Atari with Deep

Reinforcement Learning”

Figures from https://gymnasium.farama.org/environments/atari/complete_list/

DQN

18 2. Methodology

• Use NN to approximate 𝑄𝜃(𝑠, 𝑎).

• Suitable for large state and action space.

• Ability to generalize.

DQN

19 2. Methodology

• To update 𝜃 in the NN

• Use NN to approximate 𝑄𝜃 𝑠, 𝑎 :

 𝐿 =
1

2
(𝑅 + max

𝑎
𝑄𝜃 𝑠′, 𝑎 − 𝑄𝜃 𝑠, 𝑎)

Predicted Q value

.detach()

DQN

20 2. Methodology

• Seems “straight-forward”:

 Deeper -> More Powerful?

• In fact, the paper was not the first to propose deep

networks for approximating 𝑄(𝑠, 𝑎).

• The main contribution is the Replay Memory.

DQN: Replay Memory

21 2. Methodology

• Save experience 𝑠, 𝑎, 𝑅, 𝑠′ in the Replay Buffer.

• In each iteration, sample a batch from the Replay Buffer.

• Benefits for doing this:

• Breaks Correlation in Successive Samples

• Promotes Sample Efficiency

• Facilitates Learning from Rare Events

• Improves Gradient Descent Stability (by having a batch).

3. Summary

Summary

Reinforcement Learning

RL learns from trial and error through interaction with an
environment

23 3. Summary

Compared with Other ML Paradigm

RL generates a sequence of decision each depending on previous
actions; Data distribution changes according to the agent’s action.

Compared with Planning (DP, MPC)

No system model!!

Back to the Gloomy Comment

24 3. Summary

If you are still interested

Sutton&Barto Book

Available free online: https://www.andrew.cmu.edu/course/10-
703/textbook/BartoSutton.pdf

25 3. Summary

David Silver UCL Lectures

Recording free on YouTube: https://www.youtube.com/watch?v=2pWv7GOvuf0

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0

Thank you

	Slide 1: A Playful Dive into the World of RL
	Slide 2: 1. Overview
	Slide 3: The Gloomy Comment
	Slide 4: The RL Paradigm
	Slide 5: An Example：Pac-Man
	Slide 6: 2. Methodology
	Slide 7: How RL Works
	Slide 8: RL Classification
	Slide 9: Tabular Solution Method Example: Q-Learning
	Slide 10: Q-Learning
	Slide 11: Q-Learning
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Q-Learning
	Slide 16: Approximated Solution Method Example: DQN
	Slide 17: DQN
	Slide 18: DQN
	Slide 19: DQN
	Slide 20: DQN
	Slide 21: DQN: Replay Memory
	Slide 22: 3. Summary
	Slide 23: Summary
	Slide 24: Back to the Gloomy Comment
	Slide 25: If you are still interested
	Slide 26

