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Network Dismantling

A\
Wy

0% 3% 6%
percentage of nodes removed

=
—

®
\ 8T, o C
AN e
o® A= «‘! - ®
® — e TN % g LA
00 4 %?‘“!' e oo
o/ Ny &
b, CQITAL ¥
‘.@.‘-éb‘é\ ‘R
>

dismantled

Network dismantling (ND) is a classic NP-hard problem that aims to find the order of node removals that
minimize the area under the dismantling curve, denoted by A(G,, ). This problem is extremely challenging:

« Huge policy search space (|V| factorial for a network with || nodes).

* Requires deep understanding of nodes’ roles (one remove changes other nodes’ roles).

We propose an efficient, data-driven planner: Message Iteration Network Dismantler (MIND):
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Results and Applications

Deploying MIND trained on synthetic networks (150-250 nodes) to 48 real networks (up to 1.5 million nodes).
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Actor-Critic
Reinforcement Learning

MIND is faster than the baselines (with linear complexity) but achieves the strongest overall performance.
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* from calculating the input feature of clustering coefficient

The SoTA performance of MIND directly translates to real-world solutions. E.g., controlling infectious disease

using minimal, targeted vaccines. Compared to random vaccination, MIND breaks way more infection chains.
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Why featureless?

1. Handcrafting input is computationally expensive
Fiedler vector as input ~6 s
Random walk as input NA (OOM)
MIND forward pass ~0.25s

Computation time on the Hyves network (1.5 million nodes)

2. Input features can bias the dismantling policy
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*MIND does not use features (uses all-ones).
*GDM is a SoTA baseline that uses input features.
*GDM input is derived using PCA on the GDM inputs.

GDM solution resembles its un-trained input and is less
effective than MIND’s data-driven solution.

Methodology

1. All-to-one attention mechanism and message profiles:
* Graph Attention Network:
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where e;* and a;'; are the node embedding and the attention
coefficient for the h-th head.

 All-to-one attention mechanism (MIND-AM):
aif; = MLP,([Whe] | - 1 Whef [ Whe! | - | Whe[]).
« Message profiles (MIND-MP):
m(v; | Ge) = ML, (e 1 1ef]).

In our paper, we showed that these designs enabled MIND to
extract commonly-used structural measures in the literature.

2. Systematic diversification of training networks:
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Randomly generated training networks are similar in properties.
We use stochastic rewiring to make a more diverse training set.
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